2012 DR30 is a trans-Neptunian object and centaur from the scattered disk and/or inner Oort cloud, located in the outermost region of the Solar System. The object with a highly eccentric orbit of 0.99 was first observed by astronomers with the Spacewatch program at Steward Observatory on 31 March 2009.[2] It measures approximately 188 kilometers (120 miles) in diameter.
Trans-Neptunian object and centaur
2012 DR30
2012 DR30 in a precovery image taken by the Sloan Digital Sky Survey in 2000
Using an epoch of February 2017, it has the second-largest heliocentric semi-major axis of a minor planet not detected out-gassing like a comet.[9] (2014 FE72 has a larger heliocentric semi-major axis.) 2012 DR30 does have a barycentric semi-major axis of 1032AU.[10][lower-alpha 1] For the epoch of July 2018 2012 DR30 will have its largest heliocentric semi-major axis of 1644AU.
2012 DR30 passed 5.7AU from Saturn in February 2009 and came to perihelion in March 2011 at a distance of 14.5AU from the Sun (inside the orbit of Uranus).[1] In 2018, it will move from 18.2AU to 19.1AU from the Sun.[8] It comes to opposition in late March. With an absolute magnitude (H) of 7.1,[2] the object has a published diameter of 185 and 188 kilometers, respectively.[5][6]
With an observation arc of 14.7 years,[1] it has a well constrained orbit. It will not be 50AU from the Sun until 2047. After leaving the planetary region of the Solar System, 2012 DR30 will have a barycentric aphelion of 2049AU with an orbital period of 33100 years.[lower-alpha 1] In a 10 million year integration of the orbit, the nominal (best-fit) orbit and both 3-sigma clones remain outside 12.2AU (qmin) from the Sun.[4] Summary of barycentric orbital parameters are:
The orbits of Sedna, 2012 VP113, Leleākūhonua, and other very distant objects along with the predicted orbit of Planet Nine. The three sednoids (pink) along with the red-colored extreme trans-Neptunian object (eTNO) orbits are suspected to be aligned with the hypothetical Planet Nine while the blue-colored eTNO orbits are anti-aligned. The highly elongated orbits colored brown include centaurs and damocloids with large aphelion distances over 200AU.
Given the orbital eccentricity of this object, different epochs can generate quite different heliocentric unperturbed two-body best-fit solutions to the semi-major axis and orbital period. For objects at such high eccentricity, the Sun's barycenter is more stable than heliocentric coordinates.[11] Using JPL Horizons, the barycentric semi-major axis is approximately 1032AU.[10]
Archived JPL Small-Body Database Browser: (2012 DR30) from 15 October 2014.
Archived MPC object data for 2012 DR30 (2009 FW54) from 12 July 2013.
Kiss, Cs.; Szabó, Gy.; Horner, J.; Conn, B. C.; Müller, T. G.; Vilenius, E.; etal. (July 2013). "A portrait of the extreme solar system object 2012 DR30". Astronomy and Astrophysics. 555: 13. arXiv:1304.7112. Bibcode:2013A&A...555A...3K. doi:10.1051/0004-6361/201321147. S2CID54021504.
"AstDyS 2012DR30 Ephemerides". Department of Mathematics, University of Pisa, Italy. Retrieved 14 February 2017. (Distance to Sun [R] from first day of 2016 to first day of 2020. Assuming average apparent magnitude for 2017.)
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.org - проект по пересортировке и дополнению контента Википедии