Vesto Melvin Slipher (/ˈslaɪfər/; November 11, 1875 – November 8, 1969) was an American astronomer who performed the first measurements of radial velocities for galaxies. He was the first to discover that distant galaxies are redshifted, thus providing the first empirical basis for the expansion of the universe.[1][2][3][4] He was also the first to relate these redshifts to velocity.[5]
Slipher was born in Mulberry, Indiana, and completed his doctorate at Indiana University in 1909.[1] He spent his entire career at Lowell Observatory in Flagstaff, Arizona, where he was promoted to assistant director in 1915, acting director in 1916, and finally director from 1926 until his retirement in 1952.[1] His great grandfather helped established a Lutheran church.[6]
Slipher, sixth from left, at the 1910 Fourth Conference International Union for Cooperation in Solar Research at Mount Wilson Observatory
Slipher used spectroscopy to investigate the rotation periods of planets and the composition of planetary atmospheres. In 1912, he was the first to observe the shift of spectral lines of galaxies, making him the discoverer of galactic redshifts.[7]
In 1914, Slipher also made the first discovery of the rotation of spiral galaxies.[8]
He discovered the sodium layer in 1929.[9] He was responsible for hiring Clyde Tombaugh and supervised the work that led to the discovery of Pluto in 1930.[1]
By 1917, Slipher had measured the radial velocities of 25 "spiral nebulae," and found that all but three of those galaxies were moving away from us, at substantial speeds. Slipher himself speculated that this might be due to the motion of our own galaxy – as in his sample, those galaxies moving towards us and those moving away from us were roughly in opposite directions.[10] In hindsight, this was the first data supporting models of an expanding universe. Later, Slipher's and additional spectroscopic measurements of radial velocities were combined by Edwin Hubble with Hubble's own determinations of galaxy distances, leading Hubble to discover the (at that time, rough) proportionality between galaxies' distances and redshifts, which is today termed Hubble–Lemaître's law (formerly named as Hubble's law, the IAU Decision of October 2018 recommends the use of a new name[11]), was formulated by Hubble and Humason in 1929 and became the basis for the modern model of the expanding universe.
Slipher died in Flagstaff, Arizona[1][12] and is buried there in Citizens Cemetery.
Awards
Member of the American Academy of Arts and Sciences (elected 1909)[13]
The crater Slipher on the Moon is named after Earl and Vesto Slipher, as is the crater Slipher on Mars and the asteroid 1766 Slipher, discovered September 7, 1962, by the Indiana Asteroid Program.
Notes
"Nesto (sic) Slipher, 93, Astronomer, Dies". The New York Times. Flagstaff, AZ (published November 10, 1969). November 9, 1969. p.47. ISSN0362-4331.
Way, M.J.; D. Hunter, eds. (2013). Origins of the Expanding Universe: 1912–1932. San Francisco: ASP Conference Series 471. Astronomical Society of the Pacific.
Nussbaumer, Harry (2013). 'Slipher's redshifts as support for de Sitter's model and the discovery of the dynamic universe' In Origins of the Expanding Universe: 1912–1932. Astronomical Society of the Pacific. pp.25–38.Physics ArXiv preprint
O'Raifeartaigh, Cormac (2013). The Contribution of V.M. Slipher to the discovery of the expanding universe in 'Origins of the Expanding Universe'. Astronomical Society of the Pacific. pp.49–62.Physics ArXiv preprint
Slipher, V.M. (1917). "Radial velocity observations of spiral nebulae". The Observatory. 40: 304–306. Bibcode:1917Obs....40..304S.
Slipher first reports on the making the first Doppler measurement on September 17, 1912 in The radial velocity of the Andromeda Nebula in the inaugural volume of the Lowell Observatory Bulletin, pp. 2.56–2.57. In his report Slipher writes: "The magnitude of this velocity, which is the greatest hitherto observed, raises the question whether the velocity-like displacement might not be due to some other cause, but I believe we have at present no other interpretation for it." Three years later, Slipher wrote a review in the journal Popular Astronomy, Vol. 23, pp. 21–24 Spectrographic Observations of Nebulae, in which he states, "The early discovery that the great Andromeda spiral had the quite exceptional velocity of -300 km(/s) showed the means then available, capable of investigating not only the spectra of the spirals but their velocities as well." Slipher reported the velocities for 15 spiral nebula spread across the entire celestial sphere, all but three having observable "positive" (that is recessional) velocities.
Slipher, Vesto (1914). "The detection of nebular rotation". Lowell Observatory Bulletin, 62.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.org - проект по пересортировке и дополнению контента Википедии