astro.wikisort.org - Investigador

Search / Calendar

Alexis Claude Clairaut, también conocido como Clairaut (París, 7 de mayo de 1713- París, 17 de mayo de 1765), fue un matemático y astrónomo francés.[1][2]

Alexis Claude Clairaut
Información personal
Nacimiento 13 de mayo de 1713
París (Reino de Francia)
Fallecimiento 17 de mayo de 1765
París (Reino de Francia)
Nacionalidad Francesa
Información profesional
Ocupación Astrónomo, matemático, mecánico y físico
Área Matemáticas, mecánica, astronomía y geodesia
Empleador Academia de Ciencias de Francia (desde 1729)
Estudiantes doctorales Patrick d'Arcy
Alumnos Patrick d'Arcy, Pierre Charles Le Monnier y Émilie du Châtelet
Miembro de
  • Academia de Ciencias de Rusia
  • Royal Society (desde 1737)
  • Academia de Ciencias de Francia (desde 1738)
  • Academia Prusiana de las Ciencias (desde 1744)
Distinciones
  • Miembro de la Royal Society (1737)

Biografía


Hijo de un profesor de matemáticas, fue considerado un niño prodigio. A los 12 años escribió un desarrollo sobre cuatro curvas geométricas, y llegó a alcanzar tal progreso en el tema (bajo la tutela de su padre), que a la edad de 13 años leyó ante la Academia francesa un resumen de las propiedades de las cuatro curvas que había descubierto. Tres años más tarde, completó un tratado sobre curvas de doble curvatura, Recherches sur les courbes a double courbure, que la valió su admisión a la Academia de Ciencias Francesa tras su publicación en 1731, a pesar de que aún no contaba con la mínima edad legal de 18 años para ser admitido.

En 1736, junto con Pierre Louis Maupertuis, formó parte de una expedición a Laponia, que tenía como objetivo medir un grado de meridiano. Tras su regreso, publicó un tratado que dio en llamar Théorie de la figure de la terre (1743). En este trabajo planteó por primera vez su teorema, que luego se haría conocido con el nombre de Teorema de Clairaut, según el cual se conecta la gravedad en los puntos superficiales de un elipsoide en rotación con la compresión y la fuerza centrífuga en el ecuador.

Clairaut obtuvo una ingeniosa resolución aproximada para el problema de los tres cuerpos. En 1750 obtuvo el premio de la Academia Rusa de Ciencias por su ensayo Théorie de la lune, y en 1759 calculó el perihelio del cometa Halley.

La Théorie de la lune de Clairaut es estrictamente newtoniana en su carácter. En este ensayo el autor explicó el movimiento del afelio que había desconcertado a los científicos y al mismo Clairaut hasta entonces, que había considerado al fenómeno tan inexplicable al punto de plantearse una hipótesis de revisión de las leyes de atracción. Fue entonces cuando se le ocurrió llevar la observación al tercer orden, tras lo cual concluyó que los resultados eran conherentes con las observaciones. Esto fue corroborado en 1754 por algunas tablas lunares. Clairaut escribió tras ello varios trabajos referidos a la órbita de la luna, y también sobre el movimiento de los cometas y su perturbación por parte de los planetas, particularmente en el caso del cometa Halley.

En 1731 Clairaut presentó una demostración de una afirmación de Newton, en la cual el inglés notaba que todas las curvas de tercer orden eran proyecciones de una de cinco parábolas.[3]

En 1741 Clairaut participó en una expedición cuyo objetivo era medir la longitud de un meridiano en la tierra, y a su regreso en 1743 publicó su trabajo Théorie de la figure de la terre. Estas ideas se basaban sobre un trabajo de Maclaurin, que había demostrado que una masa de fluido homogéneo en rotación alrededor de un eje que pase por su baricentro tomaría, bajo la atracción mutua de sus partículas, la forma de un esferoide. El trabajo de Clairaut trataba sobre esferoides heterogéneos y contenía la demostración de su fórmula para el efecto de aceleración gravitacional en un sitio de latitud I. En 1849, Stokes demostró que el mismo resultado se mantenía válido independientemente de la constitución interna y de la densidad de la tierra, si la superficie era un esferoide de equilibrio o de baja elipticidad.

Falleció en 1765, a la edad de 52 años.[4]


Véase también



Referencias


  1. BNF. «Éloge de M. Clairaut, pág 144 de la Histoire de l'Académie royale des sciences» (en francés).
  2. «Tricentenario de Clairaut» (en francés).
  3. «analytic geometry - Analytic geometry of three and more dimensions | Britannica». www.britannica.com (en inglés). Consultado el 6 de septiembre de 2022.
  4. Clariut. «Cronología de la vida de Clairaut (1713 – 1765)]» (en francés).

Bibliografía



На других языках


[en] Alexis Clairaut

Alexis Claude Clairaut (French pronunciation: ​[alɛksi klod klɛʁo]; 13 May 1713 – 17 May 1765) was a French mathematician, astronomer, and geophysicist. He was a prominent Newtonian whose work helped to establish the validity of the principles and results that Sir Isaac Newton had outlined in the Principia of 1687. Clairaut was one of the key figures in the expedition to Lapland that helped to confirm Newton's theory for the figure of the Earth. In that context, Clairaut worked out a mathematical result now known as "Clairaut's theorem". He also tackled the gravitational three-body problem, being the first to obtain a satisfactory result for the apsidal precession of the Moon's orbit. In mathematics he is also credited with Clairaut's equation and Clairaut's relation.
- [es] Alexis Claude Clairaut

[it] Alexis Clairault

Alexis Claude Clairault (o Clairaut) (Parigi, 3 maggio 1713 – Parigi, 17 maggio 1765) è stato un matematico e astronomo francese.

[ru] Клеро, Алекси Клод

Алекси́ Клод Клеро́ (фр. Alexis Claude Clairaut или фр. Clairault, 7 мая 1713, Париж — 17 мая 1765, там же) — французский математик, механик и астроном.



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии