astro.wikisort.org - Investigador

Search / Calendar

Menelao de Alejandría (c. 70 d.C. – 140 d. C.) fue un matemático y astrónomo griego, que trabajó en Alejandría y en Roma a finales del siglo I. Fue el primero en reconocer las líneas geodésicas en una superficie curva como análogas naturales de las líneas rectas y en concebir y definir el triángulo esférico.[1] Su nombre ha quedado ligado al teorema de geometría plana o esférica relativo a un triángulo cortado por una recta o un círculo máximo, conocido como el teorema de Menelao, un teorema de una gran importancia en la trigonometría antigua. También fue un defensor entusiasta de la geometría clásica.

Sphaericorum libri tres
Sphaericorum libri tres

Biografía


Aunque se sabe poco sobre la vida de Menelao, se supone que vivió en Roma tras haber pasado su juventud en Alejandría. Tanto Pappus de Alejandría como Proclo lo llaman Menelao de Alejandría y Plutarco recoge una conversación suya con Lucius en Roma.

Ptolomeo también menciona en su trabajo Almagesto (VII.3) dos observaciones astronómicas realizadas por Menelao en Roma en enero del año 98. Dichas observaciones fueron sendas ocultaciones de las estrellas Spica y Acrab (Beta Scorpii) por la luna en el intervalo de unas pocas noches. Ptolomeo usó dichas observaciones para confirmar la precesión de los equinoccios, un fenómeno que ya había sido descubierto por Hiparco de Nicea en el siglo II a. C.


Obra


Sphaerica es la única obra de Menelao que ha sobrevivido, en forma de traducción árabe. Está compuesta de tres libros y trata de la geometría de la esfera y de su aplicación a mediciones y cálculo astronómicos. El libro introduce el concepto de triángulo esférico (figuras formadas por arcos de tres círculos máximos) y prueba el teorema de Menelao (una extensión a triángulos esféricos de un resultado previo ya conocido). El libro fue traducido en el siglo XVII por el astrónomo y matemático Francesco Maurolico.

De otros libros se han conservado únicamente los títulos:


Sphaerica



Libro I

En el Libro I de ese tratado establece Menelao las bases para un estudio de los triángulo esféricos análogo al que hace Euclides en su Libro I para los triángulos planos. Se incluye ahí un teorema que no tiene analogía en Euclides, el que dice que dos triángulos esféricos son congruentes si tienen sus ángulos iguales dos a dos.


Libro II

El Libro II trata de las aplicaciones de la geometría esférica a los fenómenos astronómicos.


Libro III

El Libro III trata sobre el famoso teorema de Menelao, que para el caso plano afirma que si cortamos los lados AB, BC, CA de un triángulo ABC por una recta transversal en los puntos D, E, F respectivamente, entonces se cumple la relación AD·BE·CF=BD·CE·AF.


Eponimia



Referencias


  1. Encyclopaedia Britannica "Greek mathematician and astronomer who first conceived and defined a spherical triangle (a triangle formed by three arcs of great circles on the surface of a sphere)."
  2. «Menelaus». Gazetteer of Planetary Nomenclature (en inglés). Flagstaff: USGS Astrogeology Research Program. OCLC 44396779.

Enlaces externos



На других языках


[en] Menelaus of Alexandria

Menelaus of Alexandria (/ˌmɛnɪˈleɪəs/; Greek: Μενέλαος ὁ Ἀλεξανδρεύς, Menelaos ho Alexandreus; c. 70 – 140 CE) was a Greek[1] mathematician and astronomer, the first to recognize geodesics on a curved surface as natural analogs of straight lines.
- [es] Menelao de Alejandría

[it] Menelao di Alessandria

Menelao di Alessandria (Alessandria d'Egitto, 70 circa – Roma, 140 circa) è stato un matematico e astronomo greco antico di cui si conserva un importante trattato di geometria sferica, lo Sphaerica.

[ru] Менелай Александрийский

Менела́й Александри́йский (Μενέλαος ὁ Αλεξανδρεύς, ок. 100 н. э.) — древнегреческий математик и астроном. Время его жизни и деятельности примерно определяется приведёнными в «Альмагесте» Птолемея двумя астрономическими наблюдениями, которые Менелай произвёл в Риме в первом году царствования Траяна, то есть в 98 году н. э..



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии