Полость Роша — область вокруг звезды в двойной системе, границей которой служит эквипотенциальная поверхность, содержащая первую точку Лагранжа .
Полости Роша (обозначены жёлтым) для двойной системы. Сплошные линии — линии равного потенциала.Трёхмерное изображение поверхности потенциала для вращающихся вокруг общего центра масс по круговым орбитам звёзд с отношением масс 1:2. Поверхность потенциала изображена в системе координат, вращающейся со звёздами. В случае эллиптических орбит поле становится непотенциальным.
В системе координат, вращающейся вместе с двойной звездой, для пробного тела, находящегося в этой области, притяжение звезды, находящейся в полости Роша, преобладает и над притяжением звезды-компаньона, и над центробежной силой.
В точке Лагранжа полости Роша компонентов двойной системы соприкасаются: равнодействующая притяжений обеих звёзд обращается в ней в нуль. Это приводит к возможности перетекания вещества от одной звезды к другой при заполнении одной из них полости Роша в ходе её эволюции. Такие перетекания играют важную роль при эволюции тесных двойных звёздных систем (см. Аккреция).
Питером Эгглтоном предложена[1] эмпирическая формула для эффективного радиуса полости Роша (радиус шара, объём которого равен объёму соответствующей полости Роша), дающая результаты с точностью лучше 1 % во всём диапазоне отношения масс:
где — эффективный радиус полости Роша, отнесённый к расстоянию между компонентами, — отношение масс компонент ( — масса звезды, для которой рассчитывается эффективный радиус полости Роша).
Morris, S.L. (Feb 1994). “Two Mathematical Expansions of the Roche Equipotentials”. Publications of the Astronomical Society of the Pacific. 106 (696): 154&ndash, 155. Bibcode:1994PASP..106..154M. DOI:10.1086/133361. JSTOR40680260.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.org - проект по пересортировке и дополнению контента Википедии