astro.wikisort.org - Wissenschaft

Search / Calendar

Ein zirkumbinärer Planet ist ein Planet, der sich um einen Doppelstern bewegt.

Künstlerische Darstellung eines zirkumbinären Planeten
Künstlerische Darstellung eines zirkumbinären Planeten

Entstehung


Es wird vermutet, dass die Doppelsterne und die sie umkreisenden Planeten aus einer gemeinsamen Akkretionsscheibe entstanden sind. Ein Indiz dafür ist, dass alle Umlaufbahnen von zirkumbinären Planeten, die mit der Transitmethode nachgewiesen wurden, koplanar sind, d. h. die Umlaufbahn des Doppelsternsystems und die des Planeten liegen in einer Ebene. Ein weiteres Indiz ist die Messung des Rossiter-McLaughlin-Effekts, wonach die Rotationsachse der zirkumbinären Planeten senkrecht auf ihrer Bahnebene steht und die Planeten in Richtung ihrer Umlaufbahn rotieren.[1] Allerdings können sie nicht an dem Ort entstanden sein, an dem sie beobachtet werden. Innerhalb von zehn Astronomischen Einheiten sind die dynamischen Einflüsse auf die Bahnen der Planetesimale so groß, dass sie auf elliptischen Bahnen um das Doppelsternsystem umlaufen. Bei einer Kollision zerstören sich diese Planetesimale aufgrund der großen Relativgeschwindigkeiten, anstatt aneinander zu haften und einen Planeten zu bilden. Die zirkumbinären Planeten sind daher nachträglich an ihren gegenwärtigen Ort gewandert.[2]


Bestimmung der Masse


Die Radien der Planeten können durch die Tiefe des Lichtabfalls beim Transit bestimmt werden, nicht aber ihre Massen. Allerdings beeinflussen zirkumbinäre Planeten – im Gegensatz zu Planeten um Einzelsterne – auch die Bahn des zentralen Doppelsternsystems. Aus den Verschiebungen der durch die Planeten verursachten Bedeckungen und aus den kleinen Zeitvariationen bei den Vorübergängen vor der Scheibe der beiden Sterne können die Massen der Planeten abgeschätzt werden, wenn die Massen der Doppelsterne bekannt sind. Da die Planeten das gemeinsame gravitative Zentrum aus Stabilitätsgründen auf weiten Bahnen umlaufen, liegen noch keine genauen Werte vor.[3]


Nachweise



Transitmethode


Unstrittig sind Nachweise von zirkumbinären Planeten durch die Transitmethode, wenn sie also beim Vorübergang vor den Sternen des Doppelsternsystems eine kleine Verdunkelung der Sternoberfläche verursachen.[4]


Lichtlaufzeiteffekt


Aufgrund des Lichtlaufzeiteffektes bei bedeckungsveränderlichen Sternen können zirkumbinäre Planeten bisher nur vermutet werden. Ein indirekter Nachweis von zirkumstellaren Planeten kann durch die Veränderungen in den Zeitpunkten minimaler Helligkeit durch einen Bedeckungslichtwechsel der beiden Sterne in einem Doppelsternsystem erfolgen.

Diese durch den Lichtlaufzeiteffekt vermuteten Planeten sind bei HW Vir, NY Vir, UZ For, RR Cae, HU Aqr, DP Leo, NN Ser und NSVS 14256825 angezeigt worden. Keine dieser Planetenbahnen scheint koplanar zu sein, da es nicht gelungen ist, Transite durch die Planeten in diesen Doppelsternsystemen zu beobachten. Weiterhin sind viele der Bahnen nicht über einen längeren Zeitraum dynamisch stabil, da die angenommenen Planetenmassen sehr hoch sein müssten, um eine messbare Auswirkung auf die Sterne zu haben.[5] Weiterhin ist es bisher nicht gelungen, den weiteren Verlauf der Abweichungen der Bedeckungsminima von einer linearen Ephemeride vorherzusagen, da überlagernde Effekte wie Massentransfers zwischen den Sternen oder magnetische Aktivität auf den Sternen die Zeitpunkte minimaler Helligkeit beeinflussen. Die über den Lichtlaufzeiteffekten vermuteten zirkumbinären Planeten bedürfen noch einer unabhängigen Bestätigung.[6]


Beispiele


Bis zum 12. Januar 2020 sind durch die Transitmethode in den folgenden Doppelsternsystemen zirkumbinäre Planeten entdeckt worden:[7][8]


Einzelnachweise


  1. Stefano Meschiari: CIRCUMBINARY PLANET FORMATION IN THE KEPLER-16 SYSTEM. I. N-BODY. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1204.1314.
  2. Roman R. Rafikov: HOW TO BUILD TATOOINE: REDUCING SECULAR EXCITATION IN KEPLER CIRCUMBINARY PLANET FORMATION. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1212.2217.
  3. William F. Welsh et al.: The Transiting Circumbinary Planets Kepler-34 and Kepler-35. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1204.3955.
  4. Laurance R. Doyle et al.: Kepler-16: A Transiting Circumbinary Planet. In: Astrophysics. Solar and Stellar Astrophysics. 2011, arxiv:1109.3432.
  5. J. Horner et al.: A Dynamical Analysis of the Proposed Circumbinary HW Virginis Planetary System. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1209.0608.
  6. S.-B. Qian, L.-Y. Zhu, Z.-B. Dai, E. Fernández Lajús, F.-Y. Xiang, J.-J. He: A Dynamical Analysis of the Proposed Circumbinary HW Virginis Planetary System. In: Astrophysics. Solar and Stellar Astrophysics. 2011, arxiv:1112.4269.
  7. Megan L. A. Almeida, F. Jablonski, C. V. Rodrigues: circumbinary planets: Two circumbinary planets in the eclipsing post-common envelope system NSVS 14256825. 2012, arxiv:1210.3055.
  8. Megan E. Schwamb, Jerome A. Orosz, Joshua A. Carter, William F. Welsh, Debra A. Fischer, Guillermo Torres, Andrew W. Howard, Justin R. Crepp, William C. Keel, Chris J. Lintott, Nathan A. Kaib, Dirk Terrell, Robert Gagliano, Kian J. Jek, Michael Parrish, Arfon M. Smith, Stuart Lynn, Robert J. Simpson, Matthew J. Giguere, Kevin Schawinski: Planet Hunters: A Transiting Circumbinary Planet in a Quadruple Star System. 2012, doi:10.1086/319061, arxiv:1210.3612.

На других языках


- [de] Zirkumbinärer Planet

[en] Circumbinary planet

A circumbinary planet is a planet that orbits two stars instead of one. The two stars orbit each other in a binary star system, while the planet typically orbits farther from the center of the system than either of the two stars, although planets in stable orbits around one of the two stars in a binary are known.[1] Studies in 2013 showed that there is a strong hint that the planet and stars originate from a single disk.[2]

[ru] Планета с кратной орбитой

Планета с кратной орбитой — экзопланета, которая обращается не вокруг одиночной звезды (как, например, Земля вокруг Солнца), а вокруг двойной или (очень редко) — большего числа звёзд. Путь планеты в таком случае формируется в зависимости от орбиты вокруг всех звёзд. По состоянию на 23 января 2012 года известно двенадцать подтверждённых случаев кратно-орбитальных планет у звёзд PSR B1620−26, HW Девы, Kepler-16, Kepler-34, Kepler-35, Ross 458, NY Девы, UZ Печи, RR Резца, HU Водолея, DP Льва, NN Змеи и PH1 (Kepler-64).



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии