Преде́л Лапла́са — максимальное значение эксцентриситета, при котором решение уравнения Кеплера, выраженное в виде ряда по эксцентриситету, сходится. Названо в честь французского математика Пьера-Симона Лапласа. Приблизительное значение предела Лапласа:
Уравнение Кеплера связывает между собой среднюю аномалию M с эксцентрической аномалией E для тела, движущегося по эллипсу с эксцентриситетом ε. Это уравнение не может быть решено для E через элементарные функции, но теорема Лагранжа об обращении рядов даёт решение в виде степенного ряда от ε:
Радиус сходимости этого степенного ряда (такое число, что при меньших значениях ряд сходится, а при больших — расходится) при значениях константы M, не являющихся целочисленными кратными π, не зависит от выбора M и называется числом (пределом) Лапласа.
Предел Лапласа является решением уравнения
![]() | Это «статья-заготовка» по математике. Вы можете помочь проекту, дополнив эту статью, как и любую другую в Википедии. Нажмите и узнайте подробности. |