Эффект Лутца—Келкера, смещение Лутца—Келкера (англ. Lutz–Kelker bias) — систематическое смещение (систематическая погрешность), возникающее вследствие предположения о том, что количество наблюдаемых звёзд возрастает прямо пропорционально квадрату расстояния. В частности, данное смещение приводит к тому, что измеренные значения параллакса звёзд оказываются выше истинных значений. При измеренном параллаксе и его неопределённости как более близкие, так и более далёкие звёзды в пределах неопределённостей попадают в один и тот же интервал значений параллаксов. Но в сферических слоях на больших расстояниях расположено больше объектов, что приводит к смещению результатов измерений, вследствие чего, например, вычисляемые значения светимостей и расстояний окажутся заниженными. Первое описание эффекта было дано в статье Томаса Лутца (англ. Thomas E. Lutz) и Дугласа Келкера (англ. Douglas H. Kelker).[1] Существование данного смещения и необходимость коррекции оценок измеренных величин стали особо актуальными после высокоточных измерений параллаксов, осуществлённых спутником Hipparcos.
При данном значении параллакса и известной неопределённости звёзды как более близкие, так и более далёкие, вследствие неопределённости измерения могут оказаться имеющими одинаковое значение измеренного параллакса. Если предположить однородное распределение звёзд, то количество звёзд в расчёте на единицу параллакса будет пропорционально (здесь
показывает истинное значение параллакса), и, следовательно, на больших расстояниях в единичную сферическую оболочку попадёт большее количество звёзд. В результате у большего количества звёзд истинное значение параллакса будет меньше, чем наблюдаемое.[2][3] Следовательно, измеренный параллакс будет систематически смещаться в сторону большего значения, чем истинное. При этом полученное значение светимостей и расстояний окажется заниженным, что в дальнейшем может сказаться на других методах оценки расстояний, по светимостям.
Метод коррекции, предложенный Лутцом и Келкером, применим только в случае справедливости трёх предположений. Стандартное отклонение должно быть много меньше среднего значения, поскольку в противном случае возможно возникновение отрицательных расстояний. Наблюдаемые объекты должны быть равномерно распределены в пространстве, так что количество объектов на расстоянии d пропорционально d2. Также наблюдаемые объекты должны быть достаточно яркими для того, чтобы быть доступными для наблюдения в пределах рассматриваемых расстояний.[4]
С математической точки зрения смещение Лутца-Келкера возникает из зависимости количественной плотности от наблюдаемого параллакса, что можно выразить с помощью условной вероятности измерения параллакса. Предположим, что наблюдаемый параллакс имеет нормальное распределение относительно истинного параллакса вследствие ошибок измерения. Тогда мы можем записать функцию распределения условной вероятности измеренного параллакса , если истинное значение параллакса равно
:
Поскольку в задачах определяется истинное значение параллакса по наблюдениям, то необходимо вывести условную вероятность истинного параллакса при имеющемся наблюдаемом параллаксе
. При первоначальном рассмотрении явления Лутцом и Келкером данная вероятность, согласно теореме Байеса, была представлена в виде
где и
— априорные вероятности истинного и наблюдаемого параллакса, соответственно.
Плотность вероятности обнаружения звезды с видимой звёздной величиной на расстоянии
можно записать в виде
будет зависеть от функции светимости звезды, связанной с абсолютной звёздной величиной объекта.
является функцией плотности вероятности видимой звёздной величины, не зависящей от расстояния. Вероятность того, что звезда находится на расстоянии
, пропорциональна
, так что
Если предположить равномерное распределение звёзд в пространстве, то количественная плотность будет постоянной, поэтому можно переписать выражение в виде
, где
.
Поскольку мы рассматриваем распределение вероятности истинного значения параллакса на основе фиксированного наблюдаемого параллакса, мы можем сделать вывод, что для распределения справедлива пропорциональность[3]
и, следовательно,
Условная вероятность для истинного значения параллакса на основе наблюдаемого параллакса расходится вблизи нуля для истинного параллакса. Следовательно, нельзя нормировать данную вероятность. Следуя первоначальному описанию смещения,[2] мы можем ввести нормализацию, учтя наблюдаемый параллакс, как
Включение не меняет пропорциональность, поскольку является фиксированной константой. does not affect proportionality since it is a fixed constant. При такой нормализации мы получим вероятность 1 при равенстве истинного параллакса и наблюдаемого вне зависимости от ошибок измерения. Следовательно, можно ввести безразмерный параллакс
и получить безразмерное распределение истинного параллакса
Здесь означает точку, в которой измеренный параллакс совпадает с истинным, то есть распределение вероятности должно иметь центр в данной точке. Однако такое распределение вследствие наличия множителя
будет отклоняться от точки
в сторону меньших значений. Это и есть проявление систематического смещения Лутца-Келкера. Значение смещения определяется значением
, неопределённостью измерения параллакса.
Изначально считалось, что смещение Лутца-Келкера можно объяснить только наличием неопределённости измерения параллаксов.[2] В результате зависимости параллакса от распределения звёзд меньшие неопределённости наблюдаемого параллакса приведут к малому смещению относительно истинного значения. Чем выше неопределённость, тем сильнее будет систематическое отклонение наблюдаемого параллакса относительно истинного. Большие ошибки в измерении параллакса проявятся в вычислении светимостей, что даст возможность отследить наличие больших неопределённостей. В первоначальном описании эффекта смещение считалось значимым, когда неопределённость наблюдаемого параллакса становилась близка к 15% от измеряемой величины,
.[2] Утверждалось, что если неопределённость параллакса составляет по крайней мере 15–20%, то смещение оказывается настолько существенным, что мы теряем большую часть информации о параллаксе и расстоянии. Ряд последующих работ опроверг этот вывод, поскольку к смещению могли приводить и другие факторы. Считается, что для большинства звёздных систем смещение не настолько сильное, насколько считалось изначально.
Во многих работах исследовалось само явление смещения, его наличие и способы внесения поправок.[5][6][7][8] В некоторых статьях утверждалось, что предположение об однородном распределении звёзд может быть неприменимым в зависимости от выбора звёздной подсистемы. Более того, различное распределение звёзд в пространстве наряду с наличием ошибок измерения приведёт к различным видам смещения.[6] Таким образом, смещение зависит от выборки звёзд и распределения ошибок измерения, хотя понятие смещения Лутца-Келкера применяется в целом для описания явления для произвольной выборки звёзд. Также неизвестно, как согласуются другие источники ошибок и смещений (например, сдвиг Малмквиста) со смещением Лутца-Келкера: усиливают ли они общее смещение или, наоборот, смещают оценку в противоположные стороны.[9]
Недавно исследования наличия эффекта Лутца-Келкера стали особенно важны в свете высокоточных измерений, проводимых в рамках миссии Gaia, при учёте возможного различия функций распределения ошибок измерений.[10] По-прежнему важно с осторожностью относиться к влиянию смещения при отборе образцов, поскольку распределение звёзд, как ожидается, будет неоднородным на больших масштабах расстояний. В результате возникает вопрос, применимы ли методы коррекции, включая поправку Лутца-Келкера, предложенную в первоначальной работе, к данной выборке звёзд, поскольку ожидается, что эффекты будут зависеть от распределения звёзд. Более того, если следовать исходному описанию и зависимости смещения от погрешностей измерения, ожидается, что влияние смещения будет ниже из-за более высокой точности современных инструментов, таких как Gaia.