astro.wikisort.org - Forscher

Search / Calendar

Apollonios von Perge (lateinisch Apollonius Pergaeus; * ca. 265 v. Chr. in Perge; † ca. 190 v. Chr. in Alexandria) war ein antiker griechischer Mathematiker, bekannt für sein Buch über Kegelschnitte. In der Astronomie trug er zur Theorie der Mond- und Planetenbewegung bei, die später Ptolemäus in sein Lehrbuch übernahm.


Leben


Über das Leben des Apollonios ist nur wenig bekannt und auch die genaue Lebenszeit wird in der Forschung diskutiert.[1] Apollonios studierte und wirkte wohl die meiste Zeit in Alexandria, insbesondere unter Ptolemaios III. und Ptolemaios IV. Er lebte offenbar auch irgendwann in Pergamon, wo sich wie in Alexandria eine große Bibliothek befand. Im ersten Buch seiner Konika erwähnt er die gemeinsame Zeit mit Eudemus in Pergamon, dem er die ersten drei Bücher seiner Schrift widmete. Im Proöm zum zweiten Buch der Konika erwähnt er einen gleichnamigen Sohn und den Epikureer Philonides, mit dem er vertraut war.[2]

Der Mondkrater Apollonius ist nach ihm benannt.


Werk


In seinem bedeutendsten Werk Konika („Über Kegelschnitte“) widmete er sich eingehenden Untersuchungen über Kegelschnitte, Grenzwertbestimmungen und Minimum-Maximum-Problemen. Die ersten drei Bücher sind dem Mathematiker Eudemus gewidmet, die anderen einem Attalos, der wohl nicht mit dem König identisch ist.[3] Er wies nach, dass die vier verschiedenen Kegelschnitte (Ellipse, Kreis, Parabel und Hyperbel), deren Namen und Definitionen er einführte, vom selben allgemeinen Kegeltypus stammen. Nach Zeuthen[4] war ihm bereits der Begriff der Koordinate bekannt. Nach Apollonios von Perge sind auch der Kreis des Apollonios, das Apollonische Problem und der Satz von Apollonios benannt.

In der Astronomie trug Apollonios zur Epizykeltheorie bei und zeigte deren Verbindung zur Exzenter-Theorie. Er erklärte damit die rückläufige Planetenbewegung und die unregelmäßige Bewegung des Mondes. Seine Berechnungsmethode der "Mittelpunktsgleichung"[5] wurde unter anderem von Hipparchos und Claudius Ptolemäus aufgegriffen und weiterentwickelt. Er soll auch eine verbesserte Sonnenuhr entwickelt haben mit Stundenlinien auf Kegelschnitten.

Lange galten die Bücher V bis VIII der Kegelschnitte als verloren (und verschiedene Mathematiker des 17. Jahrhunderts bemühten sich um eine Rekonstruktion, so Franciscus Maurolicus), bis sich in der Biblioteca Medicea Laurenziana in Florenz ein arabisches Manuskript (Übersetzung der Bücher V bis VII von Thabit ibn Qurra, Ausgabe der Banu Musa Brüder) mit den verloren geglaubten Büchern V bis VII fand, das von Giovanni Alfonso Borelli und Abraham Ecchellensis 1661 in Florenz als Übersetzung veröffentlicht wurde. Buch VIII gilt als verloren, es gab aber Rekonstruktionsversuche.

Die konischen Abschnitte die durch den Schnittpunkt einer Ebene mit einem Kegel in verschiedenen Winkeln gebildet werden. Die Theorie dieser Figuren wurde ausgiebig von den altgriechischen Mathematikern entwickelt, die vor allem in Werken wie Apollonius von Perga überlebten.
Die konischen Abschnitte die durch den Schnittpunkt einer Ebene mit einem Kegel in verschiedenen Winkeln gebildet werden. Die Theorie dieser Figuren wurde ausgiebig von den altgriechischen Mathematikern entwickelt, die vor allem in Werken wie Apollonius von Perga überlebten.

Buch 1 bis 4 behandeln als Einführung die elementare Theorie der Kegelschnitte, und das Material war größtenteils schon Euklid bekannt (wie Apollonios selbst schreibt), Buch 3 enthält aber auch neue Resultate. Von Buch 1 und 2 scheint es Vorversionen gegeben zu haben, die Apollonios zirkulieren ließ, auf denen einige der überlieferten Manuskripte beruhen. Buch 5 bis 7 enthalten völlig neues, sonst unbekanntes originäres Material von Apollonios, zum Beispiel zu Normalen an Kegelschnitte in Buch 5, die die spätere Konstruktion der Evolute an Kegelschnitte vorwegnehmen. In der Darstellung folgt Apollonios dem Stil von Euklids Elementen.

Pappos von Alexandria erwähnt die Titel weiterer Werke von Apollonios. Davon sind nur Ausschnitte bei Pappos, Proklos und anderen erhalten, abgesehen von einem arabischen Manuskript von De Rationis Sectione aus dem 10. Jahrhundert (weitere arabische Manuskripte sollen nach Ibn al-Nadim existiert haben, sind aber nicht erhalten). Pappos erwähnt noch De spatii sectione (Schnitt einer Fläche), De sectione determinata, De Tactionibus (Über Berührungen, Apollonisches Problem)[6], De Inclinationibus (Neigungen), De locis planis (Ebene Örter)[7], jeweils in zwei Büchern. Claudius Ptolemäus überlieferte zwei Lehrsätze aus einem verlorenen astronomischen Buch von Apollonios.

Weitere Bücher von Apollonios sind nur dem Titel nach bekannt: Hypsikles erwähnt ein Werk, in dem Apollonios die einer Kugel eingeschriebenen Dodekaeder und Ikosaeder vergleicht, Marinos erwähnt in einem Euklid-Kommentar ein allgemeines Werk von Apollonios über Grundlagen der Mathematik (Bedeutung von Axiomen, Definitionen u. a.), nach Proklos schrieb er ein Buch über irrationale Zahlen und über die Helix auf einem Zylinder. Er soll auch ein Buch über Brennspiegel geschrieben haben und nach Eutokios in einem Buch eine bessere Näherung an als Archimedes gegeben haben.

Von Eutokios stammt ein Kommentar zu den ersten vier Büchern der Kegelschnitte.


Ausgaben und Übersetzungen



Literatur


Übersichtsdarstellungen in Handbüchern

Untersuchungen


Siehe auch





Einzelnachweise


  1. K. Fleischer, Dionysios von Alexandria. De natura (περὶ φύσεως). Übersetzung, Kommentar und Würdigung. Mit einer Einleitung zur Geschichte des Epikureismus in Alexandria, Turnhout, 2016, S. 60–70.
  2. Fleischer (2016), S. 65–69.
  3. P. Fraser, Ptolemaic Alexandria, Oxford, 1972, S. 417,418
  4. Zeuthen: Die Lehre von den Kegelschnitten im Altertum, Denkschr. d.Kopenhagener Akademie 1885, deutsch von Fischer-Benzon, Kopenhagen 1886, in A.Brill, M.Nöther: Bericht über die Entwicklung der algebraischen Funktionen in älterer und neuerer Zeit, Jahresbericht der Deutschen Mathematiker-Vereinigung, Zeitschriftenband (1894)
  5. van der Waerden: Ausgleichspunkt, „Methode der Perser“ und indische Planetenrechnung
  6. Versuche zur Rekonstruktion unternahmen François Viète in seinem Apollonius Gallus (1600) und Johann Wilhelm Camerer (1796)
  7. Einen Rekonstruktionsversuch unternahm Robert Simson 1749
Personendaten
NAME Apollonios von Perge
ALTERNATIVNAMEN Apollonius Pergaeus
KURZBESCHREIBUNG griechischer Mathematiker
GEBURTSDATUM um 262 v. Chr.
GEBURTSORT Perge
STERBEDATUM um 190 v. Chr.
STERBEORT Alexandria

На других языках


- [de] Apollonios von Perge

[en] Apollonius of Perga

Apollonius of Perga (Greek: Ἀπολλώνιος ὁ Περγαῖος; Latin: Apollonius Pergaeus; c. 240 BCE/BC – c. 190 BCE/BC) was an Ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention of analytic geometry. His definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. Gottfried Wilhelm Leibniz stated “He who understands Archimedes and Apollonius will admire less the achievements of the foremost men of later times.”[1]

[es] Apolonio de Perge

Apolonio de Perge o Perga (en griego Ἀπολλώνιος) (Perge, c. 262 a, C, - Alejandría, c. 190 a. C.)[1] fue un matemático y astrónomo griego famoso por su obra Sobre las secciones cónicas. Él fue quien dio el nombre de elipse, parábola e hipérbola, a las figuras que conocemos. Logró solucionar la ecuación general de segundo grado por medio de la geometría cónica.[2]

[it] Apollonio di Perga

Apollonio di Perga (Perga, 262 a.C. – Alessandria d'Egitto, 190 a.C.) è stato un matematico e astronomo greco antico, famoso per le sue opere sulle sezioni coniche e l'introduzione, in astronomia, degli epicicli e deferenti.



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии