astro.wikisort.org - Investigador

Search / Calendar

Apolonio de Perge o Perga (en griego Ἀπολλώνιος) (Perge, c. 262 a, C, - Alejandría, c. 190 a. C.)[1] fue un matemático y astrónomo griego famoso por su obra Sobre las secciones cónicas. Él fue quien dio el nombre de elipse, parábola e hipérbola, a las figuras que conocemos. Logró solucionar la ecuación general de segundo grado por medio de la geometría cónica.[2]

Apolonio de Perga
(Griego antiguo: Ἀπολλώνιος)

Detalle de una obra de 1537 representanto a Apolonio de Perge
Información personal
Nombre en griego antiguo Ἀπολλώνιος ὁ Περγαῖος
Nacimiento 262 a. C.
Perge
Fallecimiento 190 a. C. (72 años)
Alejandría
Información profesional
Área Matemático y Astrónomo
Conocido por Teoría de los epiciclos
Problema de Apolonio
Esquema de epiciclo de Apolonio
Esquema de epiciclo de Apolonio

También se le atribuye la hipótesis de las órbitas excéntricas o teoría de los epiciclos para intentar explicar el movimiento aparente de los planetas y de la velocidad variable de la Luna.

Sus extensos trabajos sobre geometría tratan de las secciones cónicas y de las curvas planas y la cuadratura de sus áreas.[3] Recopiló su obra en ocho libros y fue conocido con el sobrenombre de El Gran Geómetra.[4]


Biografía


Nació alrededor del 262 A. C. en la ciudad de Perge o Perga (Turquía) y falleció alrededor del 190 A.C en Alejandría, Egipto.

Se sabe que permaneció en la ciudad de Perge durante los reinados de Ptolomeo Evergetes y Ptolomeo Filopátor, a la vez que fue tesorero general de Ptolomeo Filadelfo. Por las fuentes se puede afirmar que era entre veinticinco y cuarenta años más joven que Arquímedes, de allí la estimación de sus años de nacimiento y muerte. Fuera de ello, lo poco que se sabe de su vida es que estudió en Alejandría y en esta ciudad se dedicó a la enseñanza.


Obra


Estudió las secciones cónicas utilizando como herramienta las proporciones, relacionando las magnitudes de cada elemento que conforman cada sección cónica en el caso de la parábola, elipse e hipérbola donde utilizó este método para definir las propiedades de cada corte con el cono, como lo demuestra Heath (1896), además propuso y resolvió el problema de hallar las circunferencias tangentes a tres círculos dados, conocido como problema de Apolonio. El problema aparece en su obra, hoy perdida, Las Tangencias o Los Contactos, conocida gracias a Pappus de Alejandría. Respecto a sus obras, se han perdido muchas:

Edición de 1654 de Conica de Apolonio editada por Francesco Maurolico
Edición de 1654 de Conica de Apolonio editada por Francesco Maurolico

Solo dos obras de Apolonio han llegado hasta nuestros días: Secciones en una razón dada (no se conserva el original sino una traducción al árabe) y Las Cónicas (únicamente se conserva el original de la mitad de la obra, el resto es una traducción al árabe). Esta última es la obra más importante de Apolonio, es más, junto con los Elementos de Euclides es uno de los libros más importantes de matemáticas.

Cónicas de Apolonio. Traducción al árabe
Cónicas de Apolonio. Traducción al árabe

Las Cónicas está formado por 8 libros. Fue escrito cuando Apolonio estaba en Alejandría pero posteriormente, ya en Pérgamo (hoy Bergama en Turquía), lo mejoró.

Los métodos que utiliza Apolonio (uso de rectas como sistemas de referencia) son muy parecidos a los utilizados por Descartes en su Geometría y se considera una anticipación de la Geometría analítica actual. De hecho ya utilizaba las coordenadas rectangulares. Con ayuda de estas, Apolonio definió curvas que eran bien conocidas en su tiempo: la parábola, la hipérbola y la elipse mediante las ecuaciones:

donde p y a son números positivos .[5]

Reconocimientos



Véase también



Referencias


  1. McElroy, Tucker (2005). A to Z of Mathematicians (en inglés). Nueva York: Facts on File. pp. 8-9. ISBN 0-8160-5338-3. Consultado el 24 de abril de 2022.
  2. Cecil Dampier, William. Historia de la ciencia y sus relaciones con la filosofía y la religión. Tecnos. p. 79. ISBN 84-309-0359-3.
  3. Biografías y Vidas. «Apolonio de Perga». Consultado el 15 de marzo de 2005.
  4. Boyer, Carl B. (julio de 1996). «Cap. IX: Apolonio de Perga». Historia de la matemática. Traducido por Mariano Martínez Pérez (5º edición). Alianza Editorial. pp. 189-208. ISBN 978-84-206-8094-1.
  5. L. S. Pontriaguin Método de coordenadas URSS Moscú (2011) ISBN 978-5-396-00054-4
  6. «Apollonius». Gazetteer of Planetary Nomenclature (en inglés). Flagstaff: USGS Astrogeology Research Program. OCLC 44396779.

Enlaces externos



На других языках


[de] Apollonios von Perge

Apollonios von Perge (lateinisch Apollonius Pergaeus; * ca. 265 v. Chr. in Perge; † ca. 190 v. Chr. in Alexandria) war ein antiker griechischer Mathematiker, bekannt für sein Buch über Kegelschnitte. In der Astronomie trug er zur Theorie der Mond- und Planetenbewegung bei, die später Ptolemäus in sein Lehrbuch übernahm.

[en] Apollonius of Perga

Apollonius of Perga (Greek: Ἀπολλώνιος ὁ Περγαῖος; Latin: Apollonius Pergaeus; c. 240 BCE/BC – c. 190 BCE/BC) was an Ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention of analytic geometry. His definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. Gottfried Wilhelm Leibniz stated “He who understands Archimedes and Apollonius will admire less the achievements of the foremost men of later times.”[1]
- [es] Apolonio de Perge

[it] Apollonio di Perga

Apollonio di Perga (Perga, 262 a.C. – Alessandria d'Egitto, 190 a.C.) è stato un matematico e astronomo greco antico, famoso per le sue opere sulle sezioni coniche e l'introduzione, in astronomia, degli epicicli e deferenti.



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии