astro.wikisort.org - Wissenschaft

Search / Calendar

Als Expansion des Universums wird die von Beobachtungen abgeleitete Zunahme der räumlichen Ausdehnung des Universums bezeichnet. Diese wird über die stetige Zunahme der Entfernung weit voneinander entfernter Objekte im Raum definiert. Dabei ist die absolute Expansionsgeschwindigkeit v = D·H gemäß dem Hubble-Parameter H in einem bestimmten Abstand D nach dem Hubble-Gesetz von der relativen Expansion in mitbewegten Entfernungen zu unterscheiden, das ist die Geschwindigkeit der Änderung des Skalenfaktors ȧ = H·a. Meist wird nur von dieser skalierten Expansion gesprochen.

Entwicklungsstadien des Universums (nur zur Illustration, nicht maßstäblich)
Entwicklungsstadien des Universums (nur zur Illustration, nicht maßstäblich)

In Übereinstimmung mit der Urknall-Theorie hat sich die Expansion des Universums nach der anfänglichen Inflation in den ersten Milliarden Jahren seiner Existenz verlangsamt. Seitdem nimmt die relative Ausdehnungsgeschwindigkeit zu. Die Erklärung dieser beobachteten beschleunigten Expansion ist Gegenstand aktueller Forschung und hat zum Konzept der Dunklen Energie geführt. Die absolute Expansionsgeschwindigkeit wird hingegen weiterhin durch die Gravitation abgebremst und sich nach dem Konzept der Dunklen Energie asymptotisch einem konstanten Endwert nähern.


Entdeckungsgeschichte


Albert Einstein und Willem de Sitter beschrieben 1917 zum ersten Mal das Universum mit dem Formalismus der allgemeinen Relativitätstheorie. Allerdings beschrieben sie ein statisches, immer gleichbleibendes Universum. Die Beschreibung von de Sitter erwies sich später als falsch. Alexander Friedmann gab 1922 die erste relativistische Beschreibung eines expandierenden oder auch kontrahierenden Universums (Friedmann-Gleichungen) an. Diese Publikation wurde allerdings kaum zur Kenntnis genommen.

Der amerikanische Astronom Vesto Slipher fand 1912 als Erster die Rotverschiebung der Spektrallinien des Lichts weit entfernter Galaxien. Edwin Hubble publizierte 1925 die Distanz zu M 31, dem Nebel in Andromeda, die ganz eindeutig zeigte, dass Andromeda weit außerhalb der Milchstraße liegt, 1926 publizierte er Distanzen zu weiteren Galaxien.

Die Expansion des Universums wurde 1927 vom Belgier Georges Lemaître entdeckt. Er entdeckte, was vor ihm schon Friedmann gefunden hatte, dass die Grundgleichungen der Relativitätstheorie ein dynamisches Universum ergeben. Aus der beobachteten Galaxienflucht schloss er, dass das Universum expandiert. Er verband Sliphers Rotverschiebungen von Galaxien mit Hubbles Distanzen. In seiner Publikation in den Annales de la Société Scientifique de Bruxelles im Jahr 1927 gab Lemaître auch bereits die später als Hubble-Gesetz bekannt gewordene Beziehung an, mit einem Wert für die sogenannte Hubble-Konstante , der im Jahr 1929 durch die Arbeiten von Hubble weitgehend bestätigt wurde. IAU-Mitglieder haben sich im Oktober 2018 mehrheitlich dafür ausgesprochen, das Gesetz zukünftig Hubble-Lemaître-Gesetz zu nennen.[1]

Lemaître betonte, dass die „Flucht“ der Galaxien (im Kontext der Shapley-Curtis-Debatte auch mit dem heute nicht mehr verwendeten Begriff „Nebelflucht“ bezeichnet) nicht als Bewegung in einem fixen Raum zu verstehen sei, sondern, im Sinn der allgemeinen Relativitätstheorie, als Expansion des Raumes selbst.

Hubble selbst fand die Beziehung , also die Beziehung zwischen den Distanzen der Galaxien und den als Geschwindigkeiten gedeuteten Rotverschiebungen (Dopplereffekt), im Jahr 1929. Das deutete er allerdings nicht als Expansion des Universums, sondern im Sinn von de Sitters 1917 vorgeschlagenem Modell eines statischen Universums. Hubble hat das Modell des expandierenden Universums nie vertreten und – nach seinen Publikationen zu schließen – vermutlich auch nie daran geglaubt.

Hatte Einstein noch in seinen Theorien ein statisches Universum postuliert, revidierte er angesichts dieser damals neuen Theorie des expandierenden Raumes seine Auffassung. So hatte Einstein eine kosmologische Konstante in die Feldgleichungen eingeführt, um statische Lösungen des Universums zu erhalten. Diese Lösungen der Struktur des Universums waren jedoch instabil. Einstein bezeichnete die Idee einer kosmologischen Konstanten später laut George Gamow als die „größte Eselei meines Lebens“.[2]


Forschungsstand


Mögliche Entwicklungen der Größe des Universums in Vergangenheit und Zukunft für eine gegebene aktuelle Expansionsrate H0 werden durch die Friedmann-Gleichung beschrieben. Der zutreffende Fall ist das ΛCDM-Modell (magenta).
Mögliche Entwicklungen der Größe des Universums in Vergangenheit und Zukunft für eine gegebene aktuelle Expansionsrate H0 werden durch die Friedmann-Gleichung beschrieben. Der zutreffende Fall ist das ΛCDM-Modell (magenta).

Laut der heute gängigsten Theorie ist die kosmologische Rotverschiebung kein Dopplereffekt im eigentlichen Sinne, sondern beruht auf der allgemeinen zeitlichen Zunahme von Abständen im Universum. Dies führt zu der Annahme des Urknalls, da die Abstände zwischen den Galaxien in diesem Modell zu einem endlichen Zeitpunkt in der Vergangenheit verschwinden und daher ein Zustand unendlich hoher Dichte vorliegt.

Lange Zeit war unklar, ob die Expansion

1998 veröffentlichte Beobachtungen weit entfernter Supernovae vom Typ Ia im Rahmen des Supernova Cosmology Project und High-Z Supernova Search Team, für deren Auswertung die Astronomen Saul Perlmutter, Brian P. Schmidt und Adam Riess den Nobelpreis für Physik des Jahres 2011 zugesprochen bekamen,[3] zeigen, dass die relative Expansion des Universums heute beschleunigt abläuft. Diese Ergebnisse stimmen überein mit Untersuchungen der kosmischen Hintergrundstrahlung, beispielsweise mittels des WMAP-Satelliten. Als Ursache wird Dunkle Energie angenommen, eine zeitlich variable Verallgemeinerung der kosmologischen Konstante. Dunkle Energie konnte bislang nicht direkt nachgewiesen werden; ihre einzigen derzeit beobachtbaren Auswirkungen beziehen sich auf die Expansion des Universums sowie die Strukturbildung im Universum.

Die Beschleunigung der relativen Expansion wird mit dem Lambda-CDM-Modell beschrieben.

Eine andere Hypothese zur Entstehung der Rotverschiebung ist die der abstandsabhängigen Photonen-Alterung. Sie kam mit der Quantentheorie auf und lehnte sich an das Teilchenbild des Lichts an, gilt heute jedoch als wissenschaftlich überholt.

Aus einigen Beobachtungen, die im Rahmen der normalen Friedmann-Lemaître-Robertson-Walker-Metrik nicht verstanden werden können, schließt man auf eine Phase exponentieller Expansion in der Frühzeit des Universums. Diese Expansionstheorien werden Inflationstheorien genannt.

Es werden auch Erklärungsversuche im Rahmen der allgemeinen Relativitätstheorie untersucht.[4][5]


Siehe auch



Literatur





Einzelnachweise


  1. Elizabeth Gibney: Belgian priest recognized in Hubble law name change. In: Nature News. 30. Oktober 2018, doi:10.1038/d41586-018-07234-y.
  2. J.-P. Luminet: The Rise of Big Bang Models, from Myth to Theory and Observations. arxiv:0704.3579.
  3. The Nobel Prize in Physics 2011. Auf: nobelprize.org. Abgerufen am 5. Oktober 2011.
  4. David L. Wiltshire: Gravitational energy as dark energy: cosmic structure and apparent acceleration. arxiv:1102.2045v1 (englisch).
  5. David L. Wiltshire: Cosmic clocks, cosmic variance and cosmic averages. arxiv:gr-qc/0702082 (englisch).

На других языках


- [de] Expansion des Universums

[en] Expansion of the universe

The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time.[1] It is an intrinsic expansion whereby the scale of space itself changes. The universe does not expand "into" anything and does not require space to exist "outside" it. This expansion involves neither space nor objects in space "moving" in a traditional sense, but rather it is the metric (which governs the size and geometry of spacetime itself) that changes in scale. As the spatial part of the universe's spacetime metric increases in scale, objects become more distant from one another at ever-increasing speeds. To any observer in the universe, it appears that all of space is expanding, and that all but the nearest galaxies (which are bound by gravity) recede at speeds that are proportional to their distance from the observer. While objects within space cannot travel faster than light, this limitation does not apply to the effects of changes in the metric itself.[notes 1] Objects that recede beyond the cosmic event horizon will eventually become unobservable, as no new light from them will be capable of overcoming the universe's expansion, limiting the size of our observable universe.

[es] Expansión métrica del espacio

La expansión métrica del espacio es una pieza clave de la ciencia actual para comprender el universo, a través del cual el propio espacio-tiempo es descrito por una métrica que cambia con el tiempo de tal manera que las dimensiones espaciales parecen crecer o extenderse según el universo se hace más joven o viejo. Ecuaciones diferenciales explican cómo se expande el universo en el modelo del Big Bang; una característica de nuestro universo corroborada por todos los experimentos cosmológicos, cálculos astrofísicos y medidas tomadas hasta la fecha. La métrica que describe formalmente la expansión en el modelo estándar de Big Bang se conoce como métrica de Friedman-Lemaître-Robertson-Walker. [cita requerida]



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии