astro.wikisort.org - Wissenschaft

Search / Calendar

Gammaastronomie oder Gammastrahlen-Astronomie ist die Erforschung des Weltraums mittels Gammateleskopen. Aufgrund des viel höheren Energiebereichs der Gammaquanten (> 500 keV) im Vergleich zu sichtbarem Licht (~ 1 eV) und damit einhergehend auch der z. T. völlig unterschiedlichen Ursachen, erlaubt die Gammaastronomie Einblicke in neue Phänomene im Universum, insbesondere gewaltige Explosionen und Kollisionen von Sternen und anderen Himmelskörpern. Die Gammaastronomie öffnete somit ein Fenster in ganz andere Bereiche der Astronomie.


Grundlagen



Weltraumgestützte Gammaastronomie


Dieser Zweig der Astronomie ist noch relativ jung, da es auf der Erde nicht möglich ist, Gammastrahlen aus dem Weltraum aufzufangen, da diese von der Erdatmosphäre absorbiert werden. Wissenschaftler, die Gammastrahlenquellen im Weltraum untersuchen wollen, müssen sich deshalb auf entsprechende Observatorien verlassen, die auf Satelliten die Erde umkreisen. Es ist jedoch auch außerhalb der Erdatmosphäre nicht möglich, Gammastrahlenquellen wie im sichtbaren Licht mittels eines Linsen- oder Spiegelteleskops zu beobachten, da diese hochenergetischen Strahlen nicht von Linsen gebrochen und nicht von Spiegeln reflektiert werden. Man verwendet daher sandwichartig übereinander gelagerte Szintillationszähler bei denen beim Durchgang eines Gammaphotons durch ein bestimmtes Material Lichtblitze erzeugt werden: Die Lichtblitze werden durch Halbleiter-Photomultiplier gemessen, wobei ihre Spur durch den Detektorstapel eine grobe Richtungsabschätzung des einfallenden Gammaphotons auf ein paar Grad genau ermöglicht.


Gammaastronomie am Erdboden


MAGIC, Tscherenkow-Teleskop auf La Palma; Bild: MAGIC-Kollaboration
MAGIC, Tscherenkow-Teleskop auf La Palma; Bild: MAGIC-Kollaboration

Mit bildgebenden Tscherenkow-Teleskopen ist es seit Anfang der 2000er Jahre möglich, Gammastrahlen indirekt vom Erdboden aus zu beobachten, indem man die Wechselwirkung der kosmischen Gammastrahlung mit der Erdatmosphäre beobachtet. Hierbei entstehen beim Zusammenprall der Gammaphotonen mit den Molekülen der Hochatmosphäre Sekundärteilchenschauer, welche wiederum beim Flug durch die Atmosphäre Tscherenkow-Licht aussenden. Der dadurch in Flugrichtung der Teilchen entstehende (d. h. auf den Erdboden) gerichtete kegelförmige Lichtblitz kann mit Tscherenkow-Teleskopen gemessen werden.


Geschichte



Anfänge


Auch wenn schon in den 1940er und 1950er Jahren vermutet wurde, dass es Gammastrahlen im Weltraum geben könnte, so konnte doch erst der Satellit Explorer 11 (gestartet am 27. April 1961), der nur für diesen Zweck gebaut wurde, Gammastrahlen entdecken. Während seiner 4 Monate langen Mission entdeckte er 22 Gammastrahlenereignisse.


Gammasatelliten


Dies war der erste einer Reihe von Satelliten, die von nun an regelmäßig im Orbit Gammastrahlen beobachten:


Gammateleskope am Erdboden


Zwei Teleskope des HESS-Teleskop-Arrays
Zwei Teleskope des HESS-Teleskop-Arrays

Bei der erdgebundenen Beobachtung von Gammastrahlen sind, nach einer Reihe von kleineren Versuchsprojekten, zwei wegweisende Projekte zu nennen, die sich im Betrieb befinden:


Forschungsobjekte der Gammaastronomie


Aufgrund der bereits erwähnten hohen Energie der Gammastrahlung (über 105 eV im Vergleich zu Licht mit ~1,5…3 eV) müssen auch die Entstehungsmechanismen dieser Strahlung ganz andere als die des Lichts sein. In der Mehrzahl sind dies dramatische Explosionen und Kollisionen im Weltall:

Die höchste bisher beobachte Photonenenergie von 16 TeV, beobachtet mit dem HEGRA-Teleskop, hatte ihre Quelle im Blazar Markarjan 501.

Durch H.E.S.S. gefundene Gammastrahlungsquellen (Montage)
Durch H.E.S.S. gefundene Gammastrahlungsquellen (Montage)

Siehe auch


Astronomie, Satellit, Teleskop, Gammastrahlung, Tscherenkow-Strahlung, Röntgenastronomie


Literatur





На других языках


- [de] Gammaastronomie

[ru] Гамма-астрономия

Гамма-астрономия — раздел астрономии, исследующий космические объекты по их гамма-излучению. Гамма-лучи представляют собой электромагнитные волны с чрезвычайно малой длиной волны, менее 0.1 Å. Их волновые свойства практически не проявляются, но зато ярко выражены корпускулярные, поэтому их часто называют гамма-квантами. Со стороны низких энергий гамма диапазон соседствует с рентгеновским, условной границей считается 100 кэВ. Для испускания гамма-лучей требуются колоссальные запасы энергии, поэтому, как и в рентгеновской астрономии, их источниками становятся «экзотические» объекты: пульсары, остатки сверхновых звёзд, активные ядра галактик и др. Формирование гамма-квантов тесно связано с высокоэнергетическими частицами, поэтому гамма-астрономия и физика космических лучей во многом пересекаются.



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии