astro.wikisort.org - Science

Search / Calendar

Primordial black holes (also abbreviated as PBH)[1][2] are hypothetical black holes that formed soon after the Big Bang. Due to the extreme environment of the newly born universe, extremely dense pockets of sub-atomic matter had been tightly packed to the point of gravitational collapse, creating a primordial black hole that bypasses the density needed to make black holes today due to the densely packed, high energy state present in the moments just after the Big Bang. Seeing as the creation of primordial black holes pre-date the creation of known stars, they can be formed with less mass than what are known as Stellar black holes. Yakov Borisovich Zel'dovich and Igor Dmitriyevich Novikov in 1966 first proposed the existence of such black holes,[3]while the first in-depth study was conducted by Stephen Hawking in 1971.[4] However, their existence has not been proven and remains theoretical.


Theoretical history


Depending on the model, primordial black holes could have initial masses ranging from 10−8 kg[5](the so-called Planck relics) to more than thousands of solar masses. However, primordial black holes originally having mass lower than 1011 kg would not have survived to the present due to Hawking radiation, which causes complete evaporation in a time much shorter than the age of the Universe.[6] Primordial black holes are non-baryonic[7] and as such are plausible dark matter candidates.[8][9][10][11][12] Primordial black holes are also good candidates for being the seeds of the supermassive black holes at the center of massive galaxies, as well as of intermediate-mass black holes.[13]

Primordial black holes belong to the class of massive compact halo objects (MACHOs). They are naturally a good dark matter candidate: they are (nearly) collision-less and stable (if sufficiently massive), they have non-relativistic velocities, and they form very early in the history of the Universe (typically less than one second after the Big Bang).[14] Nevertheless, critics maintain that tight limits on their abundance have been set up from various astrophysical and cosmological observations, which would exclude that they contribute significantly to dark matter over most of the plausible mass range.[15] However, new research has provided for the possibility again, whereby these black holes would sit in clusters with a 30-solar-mass primordial black hole at the center.[16][17]

In March 2016, one month after the announcement of the detection by Advanced LIGO/VIRGO of gravitational waves emitted by the merging of two 30 solar mass black holes (about 6×1031 kg), three groups of researchers proposed independently that the detected black holes had a primordial origin.[18][19][20][21] Two of the groups found that the merging rates inferred by LIGO are consistent with a scenario in which all the dark matter is made of primordial black holes, if a non-negligible fraction of them are somehow clustered within halos such as faint dwarf galaxies or globular clusters, as expected by the standard theory of cosmic structure formation. The third group claimed that these merging rates are incompatible with an all-dark-matter scenario and that primordial black holes could only contribute to less than one percent of the total dark matter. The unexpected large mass of the black holes detected by LIGO has strongly revived interest in primordial black holes with masses in the range of 1 to 100 solar masses. It is however still debated whether this range is excluded or not by other observations, such as the absence of micro-lensing of stars,[22] the cosmic microwave background anisotropies, the size of faint dwarf galaxies, and the absence of correlation between X-ray and radio sources towards the galactic center.

In May 2016, Alexander Kashlinsky suggested that the observed spatial correlations in the unresolved gamma-ray and X-ray background radiations could be due to primordial black holes with similar masses, if their abundance is comparable to that of dark matter.[23]

In April 2019, a study was published suggesting this hypothesis may be a dead end. An international team of researchers has put a theory speculated by the late Stephen Hawking to its most rigorous test to date, and their results have ruled out the possibility that primordial black holes smaller than a tenth of a millimeter (7 × 1022 kg) make up most of dark matter.[24][25]

In August 2019, a study was published opening up the possibility of making up all dark matter with asteroid-mass primordial black holes (3.5 × 10−17 – 4 × 10−12 solar masses, or 7 × 1013 – 8 × 1018 kg).[26]

In September 2019, a report by James Unwin and Jakub Scholtz proposed the possibility of a primordial black hole (PBH) with mass 5–15 MEarth (Earth masses), about the diameter of a tennis ball, existing in the extended Kuiper Belt to explain the orbital anomalies that are theorized to be the result of a 9th planet in the solar system.[27][28]


Formation


Formation of the universe with and without primordial black holes
Formation of the universe with and without primordial black holes

Primordial black holes could have formed in the very early Universe (less than one second after the Big Bang), during the so-called radiation dominated era. The essential ingredient for the formation of a primordial black hole is a fluctuation in the density of the Universe, inducing its gravitational collapse. One typically requires density contrasts (where is the density of the Universe) to form a black hole.[29] There are several mechanisms able to produce such inhomogeneities in the context of cosmic inflation (in hybrid inflation models, for example axion inflation), reheating, or cosmological phase transitions.


Observational limits and detection strategies


A variety of observations have been interpreted to place limits on the abundance and mass of primordial black holes:

At the time of the detection by LIGO of the gravitational waves emitted during the final coalescence of two 30 solar mass black holes, the mass range between 10 and 100 solar masses was still only poorly constrained. Since then, new observations have been claimed to close this window, at least for models in which the primordial black holes have all the same mass:

In the future, new limits will be set up by various observations:


Implications


Problems deemed to be related to the existence of primordial black holes include the dark matter problem, the cosmological domain wall problem[56] and the cosmological monopole problem.[57] Since primordial black holes do not necessarily have to be small (they can have any size), they may have contributed to the later formation of galaxies.

Even if they do not solve these problems, the low number of primordial black holes (as of 2010, only two intermediate mass black holes were confirmed) aids cosmologists by putting constraints on the spectrum of density fluctuations in the early universe.


String theory


General relativity predicts the smallest primordial black holes would have evaporated by now, but if there were a fourth spatial dimension – as predicted by string theory – it would affect how gravity acts on small scales and "slow down the evaporation quite substantially".[58] In essence, the energy stored in the fourth spatial dimension as a stationary wave would bestow a significant rest mass to the object when regarded in the conventional four-dimensional space-time. This could mean there are several thousand black holes in our galaxy. To test this theory, scientists will use the Fermi Gamma-ray Space Telescope which was put in orbit by NASA on June 11, 2008. If they observe specific small interference patterns within gamma-ray bursts, it could be the first indirect evidence for primordial black holes and string theory.[needs update]


See also



References


  1. Primordial black holes as a dark matter candidate – Journal of Physics G: Nuclear and Particle Physics
  2. – Frontiers in Astronomy and Space Sciences
  3. Zel'dovitch & Novikov (14 March 1966). "The Hypothesis of Cores Retarded During Expansion and the Hot Cosmological MOdel". Soviet Astronomy. 10 (4): 602–603. Bibcode:1966AZh....43..758Z.
  4. Hawking, S (1971). "Gravitationally collapsed objects of very low mass". Mon. Not. R. Astron. Soc. 152: 75. Bibcode:1971MNRAS.152...75H. doi:10.1093/mnras/152.1.75.
  5. Carr, B.J.; Hawking, S.W. (2004). "Black holes in the early Universe". Monthly Notices of the Royal Astronomical Society. 168 (2): 399–416. arXiv:astro-ph/0407207. Bibcode:1974MNRAS.168..399C. doi:10.1093/mnras/168.2.399.
  6. del Barco, Oscar (2021). "Primordial black hole origin for thermal gamma-ray bursts". Monthly Notices of the Royal Astronomical Society. 506 (1): 806–812. arXiv:2007.11226. Bibcode:2021MNRAS.506..806B. doi:10.1093/mnras/stab1747.
  7. Overduin, J. M.; Wesson, P. S. (November 2004). "Dark Matter and Background Light". Physics Reports. 402 (5–6): 267–406. arXiv:astro-ph/0407207. Bibcode:2004PhR...402..267O. doi:10.1016/j.physrep.2004.07.006. S2CID 1634052.
  8. Frampton, Paul H.; Kawasaki, Masahiro; Takahashi, Fuminobu; Yanagida, Tsutomu T. (22 April 2010). "Primordial Black Holes as All Dark Matter". Journal of Cosmology and Astroparticle Physics. 2010 (4): 023. arXiv:1001.2308. Bibcode:2010JCAP...04..023F. doi:10.1088/1475-7516/2010/04/023. ISSN 1475-7516. S2CID 119256778.
  9. Espinosa, J. R.; Racco, D.; Riotto, A. (23 March 2018). "A Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter". Physical Review Letters. 120 (12): 121301. arXiv:1710.11196. Bibcode:2018PhRvL.120l1301E. doi:10.1103/PhysRevLett.120.121301. PMID 29694085. S2CID 206309027.
  10. Clesse, Sebastien; García-Bellido, Juan (2018). "Seven Hints for Primordial Black Hole Dark Matter". Physics of the Dark Universe. 22: 137–146. arXiv:1711.10458. Bibcode:2018PDU....22..137C. doi:10.1016/j.dark.2018.08.004. S2CID 54594536.
  11. Lacki, Brian C.; Beacom, John F. (12 August 2010). "Primordial Black Holes as Dark Matter: Almost All or Almost Nothing". The Astrophysical Journal. 720 (1): L67–L71. arXiv:1003.3466. Bibcode:2010ApJ...720L..67L. doi:10.1088/2041-8205/720/1/L67. ISSN 2041-8205. S2CID 118418220.
  12. Kashlinsky, A. (23 May 2016). "LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies". The Astrophysical Journal. 823 (2): L25. arXiv:1605.04023. Bibcode:2016ApJ...823L..25K. doi:10.3847/2041-8205/823/2/L25. ISSN 2041-8213. S2CID 118491150.
  13. Clesse, S.; Garcia-Bellido, J. (2015). "Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies". Physical Review D. 92 (2): 023524. arXiv:1501.07565. Bibcode:2015PhRvD..92b3524C. doi:10.1103/PhysRevD.92.023524. hdl:10486/674729. S2CID 118672317.
  14. Sokol, Joshua (2020-09-23). "Physicists Argue That Black Holes From the Big Bang Could Be the Dark Matter". Quanta Magazine. Retrieved 2021-09-06.
  15. Ali-Haïmoud, Yacine; Kovetz, Ely D.; Kamionkowski, Marc (2017-12-19). "The merger rate of primordial-black-hole binaries". Physical Review D. 96 (12): 123523. arXiv:1709.06576. Bibcode:2017PhRvD..96l3523A. doi:10.1103/PhysRevD.96.123523. ISSN 2470-0010. S2CID 119419981.
  16. Jedamzik, Karsten (2020-09-14). "Primordial Black Hole Dark Matter and the LIGO/Virgo observations". Journal of Cosmology and Astroparticle Physics. 2020 (9): 022. arXiv:2006.11172. Bibcode:2020JCAP...09..022J. doi:10.1088/1475-7516/2020/09/022. ISSN 1475-7516. S2CID 219956276.
  17. Jedamzik, Karsten (September 2020). "Primordial black hole dark matter and the LIGO/Virgo observations". Journal of Cosmology and Astroparticle Physics. 2020 (9): 022. arXiv:2006.11172. Bibcode:2020JCAP...09..022J. doi:10.1088/1475-7516/2020/09/022. ISSN 1475-7516. S2CID 219956276.
  18. Bird, S.; Cholis, I. (2016). "Did LIGO Detect Dark Matter?". Physical Review Letters. 116 (20): 201301. arXiv:1603.00464. Bibcode:2016PhRvL.116t1301B. doi:10.1103/PhysRevLett.116.201301. PMID 27258861. S2CID 23710177.
  19. Clesse, S.; Garcia-Bellido, J. (2017). "The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with Advanced LIGO". Physics of the Dark Universe. 10 (2016): 142–147. arXiv:1603.05234. Bibcode:2017PDU....15..142C. doi:10.1016/j.dark.2016.10.002. S2CID 119201581.
  20. Sasaki, M.; Suyama, T.; Tanaki, T. (2016). "Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914". Physical Review Letters. 117 (6): 061101. arXiv:1603.08338. Bibcode:2016PhRvL.117f1101S. doi:10.1103/PhysRevLett.117.061101. PMID 27541453. S2CID 7362051.
  21. "Did Gravitational Wave Detector Find Dark Matter?". Johns Hopkins University. June 15, 2016. Retrieved June 20, 2015.
  22. Khalouei, E.; Ghodsi, H.; Rahvar, S.; Abedi, J. (2021-04-02). "Possibility of primordial black holes as the source of gravitational wave events in the advanced LIGO detector". Physical Review D. 103 (8): 084001. arXiv:2011.02772. Bibcode:2021PhRvD.103h4001K. doi:10.1103/PhysRevD.103.084001. S2CID 226254110.
  23. Kashlinsky, A. (2016). "LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies". The Astrophysical Journal. 823 (2): L25. arXiv:1605.04023. Bibcode:2016ApJ...823L..25K. doi:10.3847/2041-8205/823/2/L25. S2CID 118491150.
  24. "Dark matter is not made up of tiny black holes". ScienceDaily. 2 April 2019. Retrieved 27 September 2019.
  25. Niikura, H.; Takada, M.; Yasuda, N.; et al. (2019). "Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations". Nature Astronomy. 3 (6): 524–534. arXiv:1701.02151. Bibcode:2019NatAs...3..524N. doi:10.1038/s41550-019-0723-1. S2CID 118986293.
  26. Montero-Camacho, Paulo; Fang, Xiao; Vasquez, Gabriel; Silva, Makana; Hirata, Christopher M. (2019-08-23). "Revisiting constraints on asteroid-mass primordial black holes as dark matter candidates". Journal of Cosmology and Astroparticle Physics. 2019 (8): 031. arXiv:1906.05950. Bibcode:2019JCAP...08..031M. doi:10.1088/1475-7516/2019/08/031. ISSN 1475-7516. S2CID 189897766.
  27. Schultz, J.; Unwin, J. (2019). What if Planet 9 is a Primordial Black Hole?. High Energy Physics - Phenomenology (Report). arXiv:1909.11090.
  28. Anderson, D.; Hunt, B. (5 December 2019). "Why astrophysicists think there's a black hole in our solar system". Business Insider. Retrieved 7 December 2019.
  29. Harada, T.; Yoo, C.-M.; Khori, K. (2013). "Threshold of primordial black hole formation". Physical Review D. 88 (8): 084051. arXiv:1309.4201. Bibcode:2013PhRvD..88h4051H. doi:10.1103/PhysRevD.88.084051. S2CID 119305036.
  30. Hawking, S.W. (1977). "The quantum mechanics of black holes". Scientific American. 236: 34–40. Bibcode:1977SciAm.236a..34H. doi:10.1038/scientificamerican0177-34.
  31. Barnacka, A.; Glicenstein, J.; Moderski, R. (2012). "New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts". Physical Review D. 86 (4): 043001. arXiv:1204.2056. Bibcode:2012PhRvD..86d3001B. doi:10.1103/PhysRevD.86.043001. S2CID 119301812.
  32. Katz, Andrey; Kopp, Joachim; Sibiryakov, Sergey; Xue, Wei (2018-12-05). "Femtolensing by dark matter revisited". Journal of Cosmology and Astroparticle Physics. 2018 (12): 005. arXiv:1807.11495. Bibcode:2018JCAP...12..005K. doi:10.1088/1475-7516/2018/12/005. ISSN 1475-7516. S2CID 119215426.
  33. Capela, Fabio; Pshirkov, Maxim; Tinyakov, Peter (2013). "Constraints on primordial black holes as dark matter candidates from capture by neutron stars". Physical Review D. 87 (12): 123524. arXiv:1301.4984. Bibcode:2013PhRvD..87l3524C. doi:10.1103/PhysRevD.87.123524. S2CID 119194722.
  34. Graham, Peter W.; Rajendran, Surjeet; Varela, Jaime (2015-09-09). "Dark matter triggers of supernovae". Physical Review D. 92 (6): 063007. arXiv:1505.04444. Bibcode:2015PhRvD..92f3007G. doi:10.1103/PhysRevD.92.063007. ISSN 1550-7998.
  35. Tisserand, P.; Le Guillou, L.; Afonso, C.; Albert, J. N.; Andersen, J.; Ansari, R.; Aubourg, E.; Bareyre, P.; Beaulieu, J. P.; Charlot, X.; Coutures, C.; Ferlet, R.; Fouqué, P.; Glicenstein, J. F.; Goldman, B.; Gould, A.; Graff, D.; Gros, M.; Haissinski, J.; Hamadache, C.; de Kat, J.; Lasserre, T.; Lesquoy, E.; Loup, C.; Magneville, C.; Marquette, J. B.; Maurice, E.; Maury, A.; Milsztajn, A.; et al. (2007). "Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds". Astronomy and Astrophysics. 469 (2): 387–404. arXiv:astro-ph/0607207. Bibcode:2007A&A...469..387T. doi:10.1051/0004-6361:20066017. S2CID 15389106.
  36. Collaboration, EROS; Collaboration, MACHO; Alves, D.; Ansari, R.; Aubourg, É.; Axelrod, T. S.; Bareyre, P.; Beaulieu, J.-Ph.; Becker, A. C.; Bennett, D. P.; Brehin, S.; Cavalier, F.; Char, S.; Cook, K. H.; Ferlet, R.; Fernandez, J.; Freeman, K. C.; Griest, K.; Grison, Ph.; Gros, M.; Gry, C.; Guibert, J.; Lachièze-Rey, M.; Laurent, B.; Lehner, M. J.; Lesquoy, É.; Magneville, C.; Marshall, S. L.; Maurice, É.; et al. (1998). "EROS and MACHO Combined Limits on Planetary Mass Dark Matter in the Galactic Halo". The Astrophysical Journal. 499 (1): L9. arXiv:astro-ph/9803082. Bibcode:1998ApJ...499L...9A. doi:10.1086/311355. S2CID 119503405.
  37. Zumalacárregui, Miguel; Seljak, Uroš (2018-10-01). "Limits on Stellar-Mass Compact Objects as Dark Matter from Gravitational Lensing of Type Ia Supernovae". Physical Review Letters. 121 (14): 141101. arXiv:1712.02240. Bibcode:2018PhRvL.121n1101Z. doi:10.1103/PhysRevLett.121.141101. PMID 30339429. S2CID 53009603.
  38. "Black holes ruled out as universe's missing dark matter". Berkeley News. 2018-10-02. Retrieved 2018-10-04.
  39. Ali-Haimoud, Y.; Kamionkowski, M. (2017). "Cosmic microwave background limits on accreting primordial black holes". Physical Review D. 95 (4): 043534. arXiv:1612.05644. Bibcode:2017PhRvD..95d3534A. doi:10.1103/PhysRevD.95.043534. S2CID 119483868.
  40. Eroshenko, Yuri (2016). "Dark Matter Density Spikes around Primordial Black Holes". Astronomy Letters. 42 (6): 347–356. arXiv:1607.00612. Bibcode:2016AstL...42..347E. doi:10.1134/S1063773716060013. S2CID 118477620.
  41. Boucenna, Sofiane M.; Kühnel, Florian; Ohlsson, Tommy; Visinelli, Luca (2018). "Novel Constraints on Mixed Dark-Matter Scenarios of Primordial Black Holes and WIMPs". Journal of Cosmology and Astroparticle Physics. 1807 (7): 003. arXiv:1712.06383. Bibcode:2018JCAP...07..003B. doi:10.1088/1475-7516/2018/07/003. S2CID 119402552.
  42. Gaggero, D.; Bertone, G.; Calore, F.; Connors, R.; Lovell, L.; Markoff, S.; Storm, E. (2017). "Searching for primordial black holes in the X-ray and radio sky" (PDF). Physical Review Letters. 118 (24): 241101. arXiv:1612.00457. Bibcode:2017PhRvL.118x1101G. doi:10.1103/PhysRevLett.118.241101. hdl:11245.1/92a58814-a03a-46cd-ac01-b9f1d1e34aa7. PMID 28665632. S2CID 38483862.
  43. Green, A.M. (2016). "Microlensing and dynamical constraints on primordial black hole dark matter with an extended mass function". Phys. Rev. D. 94 (6): 063530. arXiv:1609.01143. Bibcode:2016PhRvD..94f3530G. doi:10.1103/PhysRevD.94.063530. S2CID 55740192.
  44. Li, T. S.; Simon, J. D.; Drlica-Wagner, A.; Bechtol, K.; Wang, M. Y.; García-Bellido, J.; Frieman, J.; Marshall, J. L.; James, D. J.; Strigari, L.; Pace, A. B.; Balbinot, E.; Zhang, Y.; Abbott, T. M. C.; Allam, S.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; et al. (2016). "Farthest Neighbor: The Distant Milky Way Satellite Eridanus II" (PDF). The Astrophysical Journal. 838 (1): 8. arXiv:1611.05052. Bibcode:2017ApJ...838....8L. doi:10.3847/1538-4357/aa6113. hdl:1969.1/178710. S2CID 45137837.
  45. Mediavilla, E.; Jimenez-Vicente, J.; Munoz, J. A.; Vives Arias, H.; Calderon-Infante, J. (2017). "Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing". The Astrophysical Journal. 836 (2): L18. arXiv:1702.00947. Bibcode:2017ApJ...836L..18M. doi:10.3847/2041-8213/aa5dab. S2CID 119418019.
  46. Diego, Jose M. (2017). "Dark matter under the microscope: Constraining compact dark matter with caustic crossing events". The Astrophysical Journal. 857 (1): 25. arXiv:1706.10281. Bibcode:2018ApJ...857...25D. doi:10.3847/1538-4357/aab617. hdl:10150/627627. S2CID 55811307.
  47. Tashiro, H.; Sugiyama, N. (2012). "The effect of primordial black holes on 21 cm fluctuations". Monthly Notices of the Royal Astronomical Society. 435 (4): 3001. arXiv:1207.6405. Bibcode:2013MNRAS.435.3001T. doi:10.1093/mnras/stt1493. S2CID 118560597.
  48. Cholis, I.; Kovetz, E.D.; Ali-Haimoud, Y.; Bird, S.; Kamionkowski, M.; Munoz, J.; Raccanelli, A. (2016). "Orbital eccentricities in primordial black hole binaries". Physical Review D. 94 (8): 084013. arXiv:1606.07437. Bibcode:2016PhRvD..94h4013C. doi:10.1103/PhysRevD.94.084013. S2CID 119236439.
  49. Clesse, Sebastien; Garcia-Bellido, Juan (2016). "Detecting the gravitational wave background from primordial black hole dark matter". Physics of the Dark Universe. 18: 105–114. arXiv:1610.08479. Bibcode:2017PDU....18..105C. doi:10.1016/j.dark.2017.10.001. S2CID 73589635.
  50. Khriplovich, I. B.; Pomeransky, A. A.; Produit, N.; Ruban, G. Yu. (2008). "Can one detect passage of a small black hole through the Earth?". Physical Review D. 77 (6): 064017. arXiv:0710.3438. Bibcode:2008PhRvD..77f4017K. doi:10.1103/PhysRevD.77.064017. S2CID 118604599.
  51. I. B. Khriplovich, A. A. Pomeransky, N. Produit and G. Yu. Ruban, Passage of small black hole through the Earth. Is it detectable?, preprint
  52. "Primitive Black Holes Could Shine". Space.com. 26 September 2011.
  53. Kesden, Michael; Hanasoge, Shravan (2011). "Transient Solar Oscillations Driven by Primordial Black Holes". Physical Review Letters. 107 (11): 111101. arXiv:1106.0011. Bibcode:2011PhRvL.107k1101K. doi:10.1103/PhysRevLett.107.111101. PMID 22026654. S2CID 20800215.
  54. Naderi, Tayebeh; Mehrabi, Ahmad; Rahvar, Sohrab (2018). "Primordial black hole detection through diffractive microlensing". Physical Review D. 97 (10): 103507. arXiv:1711.06312. Bibcode:2018PhRvD..97j3507N. doi:10.1103/PhysRevD.97.103507. S2CID 118889277.
  55. Rahvar, Sohrab (2021). "Possibility of Primordial black holes Collision with Earth and the Consequences of this Collision". Monthly Notices of the Royal Astronomical Society. 507 (1): 914–918. arXiv:2107.11139. doi:10.1093/mnras/stab2239.
  56. D. Stojkovic; K. Freese & G. D. Starkman (2005). "Holes in the walls: primordial black holes as a solution to the cosmological domain wall problem". Phys. Rev. D. 72 (4): 045012. arXiv:hep-ph/0505026. Bibcode:2005PhRvD..72d5012S. doi:10.1103/PhysRevD.72.045012. S2CID 51571886. preprint
  57. D. Stojkovic; K. Freese (2005). "A black hole solution to the cosmological monopole problem". Phys. Lett. B. 606 (3–4): 251–257. arXiv:hep-ph/0403248. Bibcode:2005PhLB..606..251S. doi:10.1016/j.physletb.2004.12.019. S2CID 119401636. preprint
  58. McKee, Maggie. (2006) NewScientistSpace.com – Satellite could open door on extra dimension



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии