Gliese 710, or HIP 89825, is an orange 0.6M☉ star in the constellation Serpens Cauda. It is projected to pass near the Sun in about 1.29 million years at a predicted minimum distance of 0.051 parsecs—0.1663 light-years (10,520 astronomical units)[5] (about 1.60 trillion km) - about 1/25th of the current distance to Proxima Centauri.[10] Such a distance would make for a similar brightness to the brightest planets, optimally reaching an apparent visual magnitude of about −2.7. The star's proper motion will peak around one arcminute per year,[11][12] a rate of apparent motion that would be noticeable over a human lifespan. This is a timeframe, based on data from Gaia DR3, well within the parameters of current models which cover the next 15 million years.
Gliese 710 currently is 62.3 light-years (19.1 parsecs) from Earth in the constellation Serpens and has a below naked-eye visual magnitude of 9.69. A stellar classification of K7Vk means it is a small main-sequence star mostly generating energy through the thermonuclear fusion of hydrogen at its core. (The suffix 'k' indicates that the spectrum shows absorption lines from interstellar matter.) Stellar mass is about 57% of the Sun's mass with an estimated 58% of the Sun's radius. It is suspected to be a variable star that may vary in magnitude from 9.65 to 9.69. As of 2020, no planets have been detected orbiting it.
Computing and details of the closest approach
An artist's rendering of the Oort cloud and the Kuiper belt (inset)
Gliese710 has the potential to perturb the Oort cloud in the outer Solar System, exerting enough force to send showers of comets into the inner Solar System for millions of years, triggering visibility of about ten naked-eye comets per year,[12] and possibly causing an impact event. According to Filip Berski and Piotr Dybczyński, this event will be "the strongest disrupting encounter in the future and history of the Solar System".[13] Earlier dynamic models indicated that the net increase in cratering rate due to the passage of Gliese710 would be no more than5%.[14] They had originally estimated that the closest approach would happen in 1,360,000years when the star will approach within 0.337±0.177parsecs (1.100±0.577light-years) of the Sun.[15] Gaia DR2 later found the minimum perihelion distance to be 0.0676±0.0157parsecs or 13900±3200AU about 1.281 million years from now.[16]
Bobylev in 2010 further suggested Gliese710 has an 86% chance of passing through the Oort cloud, assuming the Oort cloud to be a spheroid around the Sun with semiminor and semimajor axes of 80,000 and 100,000AU respectively. The distance of closest approach of Gliese710 is difficult to compute precisely as it depends sensitively on its current position and velocity; Bobylev estimated that it would pass within 0.311±0.167parsecs (1.014±0.545light-years) of the Sun.[17] At the time, there was even a 1 in 10,000 chance of the star penetrating into the region (d<1,000AU) where the influence of the passing star on Kuiper belt objects would be significant.
Results from new calculations that include input data from Gaia EDR3 indicate that the flyby of Gliese 710 to the Solar System will on average be slightly closer at 0.051±0.003pc in 1.29±0.04Ma time, but with considerably less uncertainty.[5] The effects of such an encounter on the orbit of the Pluto–Charon system (and therefore, on the classical trans-Neptunian belt) are negligible, but Gliese 710 will traverse the outer Oort cloud (inside 100,000 AU or 0.48 pc) and reach the outskirts of the inner Oort cloud (inward of 20,000 AU). New calculations based on Gaia DR3 data confirm previous estimates and further reduce the associated uncertainty: minimum approach distance of 0.052±0.002pc (10635±500au), 1.29±0.02Ma into the future.[18]
Table of parameters of predictions of Gliese 710 encounter with Sun
"GJ 710". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2019-07-06.
Kukarkin, B. V.; etal. (1971). "The third edition containing information on 20437 variable stars discovered and designated till 1968". General Catalogue of Variable Stars. General Catalogue of Variable Stars (3rded.). Bibcode:1971GCVS3.C......0K.
Gray, R. O.; etal. (July 2006). "Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 parsecs: The Northern Sample I". The Astronomical Journal. 132 (1): 161–170. arXiv:astro-ph/0603770. Bibcode:2006AJ....132..161G. doi:10.1086/504637. S2CID119476992.
Schweitzer, A.; etal. (May 2019). "The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars". Astronomy & Astrophysics. 625: 16. arXiv:1904.03231. Bibcode:2019A&A...625A..68S. doi:10.1051/0004-6361/201834965. S2CID102351979. A68.
López-Santiago, J.; etal. (May 2010). "A high-resolution spectroscopic survey of late-type stars: chromospheric activity, rotation, kinematics, and age". Astronomy and Astrophysics. 514: A97. arXiv:1002.1663. Bibcode:2010A&A...514A..97L. doi:10.1051/0004-6361/200913437. S2CID118640516.
Passegger, V. M.; Schweitzer, A.; Shulyak, D.; Nagel, E.; Hauschildt, P. H.; Reiners, A.; Amado, P. J.; Caballero, J. A.; Cortés-Contreras, M.; Domínguez-Fernández, A. J.; Quirrenbach, A.; Ribas, I.; Azzaro, M.; Anglada-Escudé, G.; Bauer, F. F.; Béjar, V. J. S.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Martín, E. L.; Montes, D.; Morales, J. C.; Schmitt, J. H. M. M.; Zechmeister, M. (2019). "The CARMENES search for exoplanets around M dwarfs. Photospheric parameters of target stars from high-resolution spectroscopy. II. Simultaneous multiwavelength range modeling of activity insensitive lines". Astronomy and Astrophysics. 627: 627. arXiv:1907.00807. Bibcode:2019A&A...627A.161P. doi:10.1051/0004-6361/201935679.
de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos (10 May 2018). "An Independent Confirmation of the Future Flyby of Gliese 710 to the Solar System Using Gaia". Research Notes of the AAS. 2 (2): 30. arXiv:1805.02644. Bibcode:2018RNAAS...2...30D. doi:10.3847/2515-5172/aac2d0. S2CID119467738.
García-Sánchez, J.; etal. (1999). "Stellar encounters with the Oort cloud based on Hipparcos data". The Astronomical Journal. 117 (2): 1042–1055. Bibcode:1999AJ....117.1042G. doi:10.1086/300723.
Bailer-Jones, C.A.L.; Rybizki, J; Andrae, R.; Fouesnea, M. (2018). "New stellar encounters discovered in the second Gaia data release". Astronomy & Astrophysics. 616: A37. arXiv:1805.07581. Bibcode:2018A&A...616A..37B. doi:10.1051/0004-6361/201833456. S2CID56269929.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.org - проект по пересортировке и дополнению контента Википедии