WASP-121b is an extrasolar planet orbiting the star WASP-121.[4][5] WASP-121b is the first exoplanet found to contain water in an extrasolar planetary stratosphere (i.e., an atmospheric layer in which temperatures increase as the altitude increases).[4][5] WASP-121b is in the constellation Puppis,[6] and is about 850 light-years from Earth.[7][4][8]
Hot Jupiter exoplanet orbiting WASP-121
WASP-121b
Artist's impression of WASP-121b and its host star
WASP-121b is a "hot Jupiter" exoplanet with a mass about 1.18 times that of Jupiter and a radius about 1.81 times that of Jupiter.[2][4] The exoplanet orbits WASP-121, its host star, every 1.27 days.[2][4]
In 2019 a work by Hellard et al. discussed the possibility of measuring the Love number of transiting hot Jupiters using HST/STIS. A tentative measurement of for WASP-121b was published in the same work.[10][11]
The planetary orbit is inclined to the equatorial plane of the star by 8.1°.[12]
Atmospheric composition
A spectral survey in 2015 attributed 2,500°C (4,530°F), hot[4] stratosphere absorption bands to water molecules, titanium(II) oxide (TiO) and vanadium(II) oxide (VO).[1] Neutral iron was also detected in the stratosphere of WASP-121b in 2020,[13][14] along with neutral chromium and vanadium.[15]
The detection claims of titanium(II) oxide (TiO) and vanadium(II) oxide (VO) have since been disproved.[16][17][18][19]
Reanalysis of aggregated spectral data was published in June 2020. Neutral magnesium, calcium, vanadium, chromium, iron, and nickel, along with ionized sodium atoms, were detected. The low quality of available data preclude a positive identification of any molecular species, including water. The atmosphere appears to be significantly out of chemical equilibrium and possibly escaping.[20] The strong atmospheric flows beyond the Roche lobe, indicating ongoing atmosphere loss, were confirmed in late 2020.[12]
In 2021, the planetary atmosphere turned out to be slightly more blue and less absorbing, which may be an indication of planetary weather patterns.[21] By mid-2021, the presence of ions of iron, calcium, chromium, vanadium and calcium in planetary atmosphere was confirmed.[22] In 2022, barium was also detected.[23] By 2022, an absense of titanium in planetary atmosphere was confirmed and attributed to the nightside condensation of the highly refractory Titanium dioxide.[24]
Atmospheric Rossiter-McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO, 2020, arXiv:2011.01245
Gibson, Neale P.; Merritt, Stephanie; Nugroho, Stevanus K.; Cubillos, Patricio E.; de Mooij, Ernst J. W.; Mikal-Evans, Thomas; Fossati, Luca; Lothringer, Joshua; Nikolov, Nikolay; Sing, David K.; Spake, Jessica J.; Watson, Chris A.; Wilson, Jamie (2020). "Detection of Fe I in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy". Monthly Notices of the Royal Astronomical Society. 493 (2): 2215. arXiv:2001.06430. Bibcode:2020MNRAS.493.2215G. doi:10.1093/mnras/staa228. S2CID210714233.
Cabot, Samuel H. C.; Madhusudhan, Nikku; Welbanks, Luis; Piette, Anjali; Gandhi, Siddharth (2020). "Detection of neutral atomic species in the ultra-hot jupiter WASP-121b". Monthly Notices of the Royal Astronomical Society. 494 (1): 363–377. arXiv:2001.07196. Bibcode:2020MNRAS.494..363C. doi:10.1093/mnras/staa748. S2CID210838889.
Ben-Yami, Maya; Madhusudhan, Nikku; Cabot, Samuel H. C.; Constantinou, Savvas; Piette, Anjali; Gandhi, Siddharth; Welbanks, Luis (2020). "Neutral Cr and V in the Atmosphere of Ultra-hot Jupiter WASP-121 B". The Astrophysical Journal. 897 (1): L5. arXiv:2006.05995. Bibcode:2020ApJ...897L...5B. doi:10.3847/2041-8213/ab94aa. S2CID219573825.
Evans, Thomas M.; Sing, David K.; Kataria, Tiffany; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R.; Deming, Drake; Marley, Mark S.; Amundsen, David S.; Ballester, Gilda E.; Barstow, Joanna K. (August 2017). "An ultrahot gas-giant exoplanet with a stratosphere". Nature. 548 (7665): 58–61. doi:10.1038/nature23266. ISSN1476-4687.
Mikal-Evans, Thomas; Sing, David K.; Kataria, Tiffany; Wakeford, Hannah R.; Mayne, Nathan J.; Lewis, Nikole K.; Barstow, Joanna K.; Spake, Jessica J. (2020). "Confirmation of water emission in the dayside spectrum of the ultrahot Jupiter WASP-121b". Monthly Notices of the Royal Astronomical Society. 496 (2): 1638–1644. arXiv:2005.09631. Bibcode:2020MNRAS.496.1638M. doi:10.1093/mnras/staa1628. S2CID218684532.
Hoeijmakers, H. J.; Seidel, J. V.; Pino, L.; Kitzmann, D.; Sindel, J. P.; Ehrenreich, D.; Oza, A. V.; Bourrier, V.; Allart, R.; Gebek, A.; Lovis, C.; Yurchenko, S. N.; Astudillo-Defru, N.; Bayliss, D.; Cegla, H.; Lavie, B.; Lendl, M.; Melo, C.; Murgas, F.; Nascimbeni, V.; Pepe, F.; Ségransan, D.; Udry, S.; Wyttenbach, A.; Heng, Kevin (2020), Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b, arXiv:2006.11308
Gemini/GMOS Optical Transmission Spectroscopy of WASP-121b:signs of variability in an ultra-hot Jupiter, 2021, arXiv:2103.05698
An inventory of atomic species in the atmosphere of WASP-121b using UVES high-resolution spectroscopy, 2021, arXiv:2106.15394
Detection of barium in the atmospheres of the ultra-hot gas giants WASP-76b and WASP-121b, 2022, arXiv:2210.06892
The Mantis Network III: A titanium cold-trap on the ultra-hot Jupiter WASP-121 b., 2022, arXiv:2210.12847
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.org - проект по пересортировке и дополнению контента Википедии