astro.wikisort.org - Наука

Search / Calendar

Косми́ческие ско́рости (первая v1, вторая v2, третья v3 и четвёртая v4[1]) — характерные критические скорости движения космических объектов в гравитационных полях небесных тел и их систем. Космические скорости используются для характеристики типа движения космического аппарата в сфере действия небесных тел: Солнца, Земли и Луны, других планет и их естественных спутников, а также астероидов и комет.

Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос.
Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос.

По определению, космическая скорость — это минимальная начальная скорость, которую необходимо придать объекту (например, космическому аппарату) на поверхности небесного тела в отсутствие атмосферы, чтобы:

Космические скорости могут быть рассчитаны для любого удаления от центра Земли. Однако в космонавтике часто используются величины, рассчитанные конкретно для поверхности шаровой однородной модели Земли радиусом 6371 км.


Первая космическая скорость


Квадрат круговой (первой космической) скорости с точностью до знака равен ньютоновскому потенциалу Φ на поверхности небесного тела (при выборе нулевого потенциала на бесконечности):

где M — масса небесного тела, R — его радиус, G — гравитационная постоянная.

Если скорость КА или другого объекта в момент вывода на орбиту превышает круговую, его орбитой будет эллипс с фокусом в центре притяжения.


Вторая космическая скорость


Между первой и второй космическими скоростями в нерелятивистском случае существует простое соотношение:

Квадрат скорости убегания (второй космической скорости) равен удвоенному ньютоновскому потенциалу на поверхности тела, взятому с обратным знаком:

Вторая космическая скорость (параболическая скорость, скорость убегания) обычно определяется в предположении отсутствия каких-либо других небесных тел. Например, для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.


Первая и вторая космические скорости для различных небесных тел


Небесное телоМасса (по отношению к массе Земли)[2]v1, км/с[3]v2, км/с[4]
Энцелад1,8×10−5[5]0,1690,239[6]
Церера1,57×10−4[7]0,370,52[6]
Луна0,01231,6782,4
Меркурий0,05533,0054,3
Венера0,8157,32510,4
Земля17,9111,2
Марс0,1073,5465,0
Юпитер317,842,5859,5
Сатурн95,225,53535,5
Уран14,5415,12121,3
Нептун17,116,66623,5
Солнце332 940437,047618,1[6]
Белый карлик Сириус B338 9334 8006 800[6]
Нейтронная звезда PSR J0348+0432[en]ок. 670 000143 000 ± 10 000[8]~ 200 000[8][6]

Третья космическая скорость


КА, начальная скорость которого не меньше третьей космической скорости, в состоянии преодолеть притяжение Солнца и навсегда покинуть пределы Солнечной системы. Следует отметить, что космическому кораблю с постоянно работающим двигателем нет необходимости развивать такую скорость для осуществления пилотируемого межзвёздного перелёта к планетным системам других звёзд.


Четвёртая космическая скорость


Четвёртая космическая скорость — минимально необходимая скорость тела, позволяющая преодолеть притяжение галактики в данной точке. Четвёртая космическая скорость используется довольно редко. Ни один искусственный объект пока не развивал такой скорости.


См. также



Примечания


  1. Засов А. В., Сурдин В. Г. Космические скорости. Архивная копия от 15 июня 2013 на Wayback Machine
  2. Dr. David R. Williams. Planetary Fact Sheet - Ratio to Earth Values (англ.). NASA. Дата обращения: 16 ноября 2017. Архивировано 11 мая 2018 года.
  3. Первая космическая скорость, онлайн расчет. Калькулятор – справочный портал. Дата обращения: 26 июля 2019. Архивировано 13 мая 2019 года.
  4. Dr. David R. Williams. Planetary Fact Sheet - Metric (англ.). NASA. Дата обращения: 16 ноября 2017. Архивировано 20 августа 2011 года.
  5. Jacobson, R. A.; Antreasian, P. G.; Bordi, J. J.; Criddle, K. E. et al. The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data (англ.) // The Astronomical Journal : journal. — IOP Publishing, 2006. — December (vol. 132). P. 2520—2526. — doi:10.1086/508812.
  6. Вторая космическая скорость, онлайн расчет. Калькулятор – справочный портал. Дата обращения: 28 июля 2019. Архивировано 13 мая 2019 года.
  7. Carry, Benoit; et al. Near-Infrared Mapping and Physical Properties of the Dwarf-Planet Ceres (англ.) // Astronomy and Astrophysics : journal. — EDP Sciences, 2008. — January (vol. 478, no. 1). P. 235—244. — doi:10.1051/0004-6361:20078166.
  8. Строго говоря, при расчёте должны учитываться релятивистские поправки, однако гораздо большую неточность вносит имеющая место на сегодняшний день неопределённость значения радиуса нейтронной звезды

Литература



На других языках


[de] Fluchtgeschwindigkeit (Raumfahrt)

Beim Erreichen der Flucht- oder Entweichgeschwindigkeit ist die kinetische Energie eines Probekörpers gerade ausreichend, um dem Gravitationspotential eines Himmelskörpers ohne weiteren Antrieb – ballistisch – zu entkommen. Tabellierte Werte beziehen sich meist auf die Oberfläche von Himmelskörpern als Ausgangspunkt. Nicht berücksichtigt werden gegebenenfalls die Luftreibung sowie der Geschwindigkeitsbeitrag durch die Rotation des Himmelskörpers und Beiträge anderer Körper zum Gravitationspotential; sie sind in der Praxis natürlich zu beachten. Vereinfacht hängt die Fluchtgeschwindigkeit bei einem als kugelsymmetrisch angenommenen Himmelskörper nach dem Schalentheorem lediglich von dessen Masse und Radius ab.
- [ru] Космическая скорость



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии