Задача трёх тел в астрономии — одна из задач небесной механики, состоящая в определении относительного движения трёх тел (материальных точек), взаимодействующих по закону тяготения Ньютона (например, Солнца, Земли и Луны). В отличие от задачи двух тел, в общем случае задача не имеет решения в виде конечных аналитических выражений. Известны лишь отдельные точные решения для специальных начальных скоростей и координат объектов.
У этого термина существуют и другие значения, см. Задача трёх тел (значения).
Приблизительные траектории трёх одинаковых тел, находившихся в вершинах неравнобедренного треугольника и обладавших нулевыми начальными скоростями. Видно, что центр масс в соответствии с законом сохранения импульса остается на месте.
Математическая формулировка
Общая задача трёх тел в небесной механике описывается системой обыкновенных дифференциальных уравнений второго порядка
где — гравитационная постоянная, — массы тел, — радиус-векторы, определяющие их положение, а точка означает производную по времени.
Частные решения
На данный момент известно более тысячи частных решений:
Первые три решения были найдены Эйлером в 1767 году. Они существуют, когда все три тела находятся на одной прямой. В этом случае имеют место 3 возможных последовательности расположения (третье тело находится между двумя другими, либо слева или справа от обоих). Такое движение называется коллинеарным.
Ещё два решения нашёл в 1772 году Лагранж. В них треугольник, образованный телами, остаётся равносторонним и вращается в пространстве.
В 1892—1899 годах Анри Пуанкаре доказал, что существует бесконечно много частных решений задачи трёх тел.
В 1911 году У. Д. Макмиллан открыл новое частное решение, но без четкого математического обоснования. Лишь в 1961 году советский математик К. А. Ситников смог найти строгое математическое доказательство для этого случая (см. Проблема Ситникова).
В середине 1970-х годов Р. Брукеruen (англ.Roger A. Broucke ), М. Хеноrufr (фр.Michel Hénon) и Дж. Хаджидеметриу (англ.John D. Hadjidemetriou) независимо обнаружили семейство траекторий Бруке-Хено-Хаджидеметриу[1].
В 1993 ещё одно решение, имеющее вид стабильных орбит-«восьмерок», нашёл Мур[2][3].
В 2013 году сербские учёные Милован Шуваков и Велько Дмитрашинович из Института физики в Белграде нашли 11 новых периодических частных решений для задачи трёх тел, одинаковых по массе[1][4].
К 2017 году группа китайских математиков создала собственный алгоритм для поиска периодических траекторий, названный ими «чистое численное моделирование» (Clean Numerical Simulation). С его помощью учёные рассчитали новые траектории, в результате число известных семейств периодических траекторий для задачи трёх тел стало равным 695. Продолжая работу, эта группа учёных рассчитала ещё 1223 частных решений задачи.
В 2018 году математик Ляо Шицзюнь[en] и его коллеги из Шанхайского университета транспорта с помощью суперкомпьютера нашли 234 новых частных решения для задачи трёх тел без коллизий[5].
Общий случай
Относительно общего случая Вейерштрасс предложил такую задачу (1885 г., конкурс на премию шведского короля Оскара II):
Пусть дана система произвольного числа материальных точек, взаимодействующих по закону Ньютона. Требуется, в предположении,
что не произойдет соударения каких-либо двух точек, представить координаты каждой точки в виде рядов по каким-либо непрерывным
функциям времени, равномерно сходящихся для всех действительных значений этой переменной.
— Погребысский И. Б. Комментарий к Задаче трёх тел Пуанкаре // Пуанкаре А. Избранные труды. — Т. 2. — М.: Наука, 1979. — С. 967—976.
Приближённое решение
По всей видимости, сам Вейерштрасс, опираясь на свою знаменитую теорему об аппроксимации произвольной функции полиномами, желал получить выражение для координат тел в виде
,
где — некоторые полиномы.
Существование таких полиномов сразу следует из непрерывности решения, но найти конструктивный способ отыскания полиномов до сих пор не удалось.
Обсуждение самой возможности ситуации, описанной в задаче Вейерштрасса, привело к ряду важных выводов:
Если решение задачи трёх тел является голоморфной функцией в интервале и перестает быть таковым при , то при или все расстояния между телами стремятся к нулю (тройное соударение тел), или одно из них стремится к нулю, а остальные два — к конечным пределам (простое соударение тел). (Пенлеве, 1897);
Тройное соударение в задаче трёх тел возможно лишь при условии обращения в нуль момента импульса системы и, следовательно, может иметь место лишь при весьма специальных начальных данных. (Ф. А. Слудский, 1874);
Если момент импульса системы не равен нулю, то существует так называемый регуляризирующий параметр , через который можно выразить координаты и время голоморфным образом в окрестности вещественной оси . (Зундман, 1912; короткое доказательство дал в 1967 г. Бурде (Burdet)[6]).
Это подтолкнуло Пуанкаре и Зундмана искать решение не в виде функций от , а в виде рядов от некоторого параметра. Именно, координаты трёх тел и время являются голоморфными функциями вдоль всей вещественной оси плоскости , то есть существует некоторая область, в которой координаты голоморфны. По теореме Римана эту область можно отобразить на круг единичного радиуса , поэтому координаты трёх тел и время можно представить в виде функций параметра , голоморфных в круге единичного радиуса. Такие функции представимы в виде сходящегося во всем круге рядов по положительным степеням . Эти ряды были найдены Зундманом в 1912, точнее говоря, был найден алгоритм отыскания их коэффициентов. К несчастью, как показал Д. Белорицкий[7], по крайней мере в случае Лагранжа для нужд вычислительной астрономии в сходящихся рядах Зундмана нужно брать как минимум членов.
Точное решение
Система трёх тел является простейшей системой с динамическим хаосом[1].
Брунс и Пуанкаре доказали, что систему дифференциальных уравнений для движения трёх тел невозможно свести к интегрируемой[1]. Сделанное ими открытие означает, что динамические системы не изоморфны.
Простые интегрируемые системы допускают разложение на невзаимодействующие подсистемы, но в общем случае исключить взаимодействия невозможно.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.org - проект по пересортировке и дополнению контента Википедии