Xi Boötis, Latinised from ξ Boötis, is a binary star[10] system located at a distance of 22light-years away from Earth. It is the nearest visible star in the constellation Boötes. The brighter, primary component of the pair has a visual magnitude of 4.70, making it visible to the naked eye.
A light curve for Xi Bootis, showing the average of the b and y magnitudes as a function of time. Adapted from Lockwood et al. (2007)[11]
The primary star in this system is a BY Draconis variable with an apparent magnitude that varies from +4.52 to +4.67 with a period just over 10 days long, and is classified as a G-type main-sequence star. The magnetic activity in the star's chromosphere varies with time, but no activity cycle has yet been found.[12] It has 88% of the mass and 82% of the radius of the Sun, but shines with just 56% the Sun's luminosity.[7] The secondary component is a K-type star with just 66% of the Sun's mass and 61% of the Sun's radius. As of 2019, it is located at an angular separation of 5.20″ from the primary, along a position angle of 298°.[13]
The pair follow a wide, highly elliptical orbit around their common barycenter, completing an orbit every 151.5 years. Radial velocities taken of the primary as part of an extrasolar planet search show a linear trend in the velocities which is likely due to the secondary star.[14] The pair can be resolved even through smaller telescopes. The binary system contains some of the closest young solar-type stars to the Sun, with a system age of about 200 million years old.[9]
The primary star (A) has been identified as a candidate for possessing a Kuiper-like belt,[15] based on infrared observations. The estimated minimum mass of this dust disk is 2.4 times the mass of the Earth's Moon. (Compare to the value of 8.2 lunar masses for the Kuiper belt.)[16]
A necessary condition for the existence of a planet in this system are stable zones where the object can remain in orbit for long intervals. For hypothetical planets in a circular orbit around the individual members of this star system, this maximum orbital radius is computed to be 3.8AU for the primary and 3.5AU for the secondary. A planet orbiting outside of both stars would need to be at least 108AU distant.[17]
Evans, D. S. (June 20–24, 1966), "The Revision of the General Catalogue of Radial Velocities", in Batten, Alan Henry; Heard, John Frederick (eds.), Determination of Radial Velocities and their Applications, Proceedings from IAU Symposium no. 30, vol.30, University of Toronto: International Astronomical Union, p.57, Bibcode:1967IAUS...30...57E
Wielen, R. (November 1962), "Automatic orbit computation for visual binaries", Astronomical Journal, 67: 599–607, Bibcode:1962AJ.....67..599W, doi:10.1086/108791 The data is from Orbit #3; the solution used by the 6th Washington Double Star catalogue for WDS 14514+1906.
Karovicova, I.; White, T. R.; Nordlander, T.; Casagrande, L.; Ireland, M.; Huber, D. (2022). "Fundamental stellar parameters of benchmark stars from CHARA interferometry -- II. Dwarf stars". Astronomy & Astrophysics. 658: A47. arXiv:2109.06203. doi:10.1051/0004-6361/202141833. S2CID219558406.
Wood, Brian E.; Linsky, Jeffrey L. (July 2010), "Resolving the ξ Boo Binary with Chandra, and Revealing the Spectral Type Dependence of the Coronal "FIP Effect"", The Astrophysical Journal, 717 (2): 1279–1290, arXiv:1005.3281, Bibcode:2010ApJ...717.1279W, doi:10.1088/0004-637X/717/2/1279, S2CID53394680
Mamajek, Eric E.; Hillenbrand, Lynne A. (November 2008), "Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics", The Astrophysical Journal, 687 (2): 1264–1293, arXiv:0807.1686, Bibcode:2008ApJ...687.1264M, doi:10.1086/591785, S2CID27151456
Fernandes, J.; etal. (October 1998), "Fundamental stellar parameters for nearby visual binary stars: eta Cas, XI Boo, 70 OPH and 85 Peg. Helium abundance, age and mixing length parameter for low mass stars", Astronomy and Astrophysics, 338: 455–464, Bibcode:1998A&A...338..455F
Finley, Adam J.; etal. (May 2019). "The Effect of Magnetic Variability on Stellar Angular Momentum Loss. II. The Sun, 61 Cygni A, ɛ Eridani, ξ Bootis A, and τ Bootis A". The Astrophysical Journal. 876 (1): 14. arXiv:1903.09871. Bibcode:2019ApJ...876...44F. doi:10.3847/1538-4357/ab12d2. S2CID85500195. 44.
Howard, Andrew W.; Fulton, Benjamin J. (2016). "Limits on Planetary Companions from Doppler Surveys of Nearby Stars". Publications of the Astronomical Society of the Pacific. 128 (969). 114401. arXiv:1606.03134. Bibcode:2016PASP..128k4401H. doi:10.1088/1538-3873/128/969/114401. S2CID118503912.
Holmes, E. K.; etal. (2003), "A Survey of Nearby Main-Sequence Stars for Submillimeter Emission", The Astronomical Journal, 125 (6): 3334–3343, Bibcode:2003AJ....125.3334H, doi:10.1086/375202
Jaime, Luisa G.; etal. (December 2012), "Regions of dynamical stability for discs and planets in binary stars of the solar neighbourhood", Monthly Notices of the Royal Astronomical Society, 427 (4): 2723–2733, arXiv:1208.2051, Bibcode:2012MNRAS.427.2723J, doi:10.1111/j.1365-2966.2012.21839.x, S2CID118570249.
External links
"Xi Boötis". SolStation. Retrieved November 3, 2005.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.org - проект по пересортировке и дополнению контента Википедии