astro.wikisort.org - Stern

Search / Calendar

Diese Liste von Doppel- und Mehrfachsternen enthält die meisten visuellen Doppel- und Mehrfachsterne mit Bayer- und Flamsteed-Bezeichnung. Darüber hinaus sind enthalten:

Die Liste enthält in der Regel nicht:

Braune Zwerge werden in der Liste wie Sterne behandelt.


Erläuterung der Liste



Liste


Die Spalten sind mit einem Klick auf den Doppelpfeil sortierbar.

Stb. System Untersystem Typ V1 V2 ρ Ep. U S1 S2 M1 M2 Entdecker-
code
WDS d Quelle
And α And (Sirrah) I/SB 2,2 4,2 96,7 d B8 IV–VHgMn 3,8 ± 0,2 1,6 ± 0,1 MKT 11 00084+2905 30 [1] (M, d)
And γ And 1 (γ1 = A / γ2 = BC) V 2,3 5,0 9,8″ 2020 K2 IIb B9 V + A3 V + A0 V Σ 8,3 ± 0,3 STF 205 02039+4220 120 [2] (SBa/Bb, M),[3] (UBa/Bb)
2 (B/C) V 5,3 6,5 0,2″ 2010 63 a B9 V + A3 V A0 V Σ 5,7 2,6 STT 38
3 (Ba/Bb) SB 6,5 . 2,67 d B9 V A3 V 3,3 2,4
And δ And V(aO)/SB 3,3 10,0 0,4″ 2014 53 a K3 III K4 Σ 2,6 ± 0,4 BTM 1 00393+3052 32 [4] (S, M)
And η And I/SB 4,4 . 116 d G8 III G8 III 2,4 2,3 MKT 2 00572+2325 70 [5] (S, M)
And ο And 1 (A/B) SI 3,7 6,0 0,2″ 2015 117 a B6 IIIpe + A2p Σ 18 ± 2 WRH 37 23019+4220 210 [6] (UBa/Bb), [3] (SAa/Ab), [7] (M)
2 (Aa/Ab) SI 3,8 5,7 0,1″ 1997 5,6 a B6 IIIpe A2p BLA 12
2 (Ba/Bb) SB 6,0 . 33,0 d
And π And 1 (A/B) CPM 4,4 7,1 36,2″ 2019 B3 V + B6 V A6 V Σ 10,6 H 5 17 00369+3343 180 [8] (SAa/Ab, M)
2 (Aa/Ab) I/SB 4,9 5,3 144 d B3 V B6 V 5,8 4,8 MKT 1
And φ And V 4,6 5,6 0,6″ 2016 550 a B6 IV B9 V Σ 6,5 ± 2,8 STT 515 01095+4715 220 [9] (S, M)
And ψ And 1 (Aa,Ab/Ac) SI 5,2 8,1 0,4″ 2018 MCA 75 23460+4625 310
2 (Aa/Ab) SI 5,2 . 0,2″ 2003 MCA 75
And ω And 1 (A/B) V 4,8 11,7 0,7″ 2002 F3 V + F5 V Σ 1,9 BU 999 01277+4524 29 [10] (S, M)
2 (Aa/Ab) I/SB 4,8 . 255 d F3 V F5 V 1,0 0,9 CIA 4
And 2 And V 5,2 7,7 0,2″ 2009 74 a B8 A7 3,3 1,9 BU 1147 23026+4245 130 [11] (S, M)
And 26 And V 6,1 10,1 6,1″ 2016 STT 5 00187+4347 190
And 36 And V 6,1 6,5 1,2″ 2019 168 a G6 IV K6 IV Σ 1,9 ± 0,2 STF 73 00550+2338 38 [9] (S, M)
And 56 And O 5,8 6,1 202,5″ 2014 STFA 4 01562+3715 100
And 59 And V 6,1 6,7 16,6″ 2019 STF 222 02109+3902 140
And HR 647 V 6,6 7,2 0,7″ 2018 145 a F2 F7 Σ 2,4 ± 0,3 STF 228 02140+4729 40 [12] (S, M)
And HR 283 V 6,0 6,8 7,9″ 2018 9200 a B9,5 Vnn A2 Vn STF 79 01001+4443 150
And HR 9074 V 6,5 6,7 2,5″ 2019 570 a G0 V G0 V STF 3050 23595+3343 30 [13] (S)
And Groombridge 34 V 8,3 11,4 34,1″ 2019 2600 a M1 V M3,5 V 0,4 0,2 GRB 34 00184+4401 3,6 [14] (S1, M1), [15] (S2, M2)
Ant δ Ant V 5,6 9,8 10,3″ 2017 B9–9,5 V F9 Ve H N 50 10296-3036 140
Ant ζ1 Ant V 6,2 6,8 8,3″ 2020 A1 V A1 V DUN 78 09308-3153 120
Ant θ Ant SI 5,3 6,2 0,0″ 2020 18,3 a G7 III A8 V 2,1 ± 0,5 1,8 ± 0,1 FIN 326 09442-2746 100 [16] (S, M)
Ant 2MASS 0939-2448 . . T8 0,03–0,05 0,02–0,03 5,3 [17] (S, M, d)
Aps δ1 Aps CPM 4,9 5,4 103,0″ 2010 BSO 22 16203-7842 230
Aps ι Aps SI 5,9 6,5 0,1″ 2018 160 a B9 B9,5 5,4 4,7 FIN 373 17221-7007 320 [11] (S, M)
Aql β Aql V 3,8 11,4 13,4″ 2015 G8 IV M3 STT 532 19553+0624 14
Aql δ Aql SI/SB 3,4 9,2 0,1″ 1979 3,4 a F0 IV K: ≈ 1,7 ≈ 0,7 BNU 6 19255+0307 16 [18] (V2, S, M)
Aql ε Aql SB/A 4,0 . 3,5 a eps Aql 18596+1504 42
Aql η Aql V(HST) 3,8 10,0 0,7″ 2012 ≈ 870 a F6 Iab B9,8 V 5,7 2,3 EVS 2 19525+0100 270 [19] (U, M, d)
Aql θ Aql I/SB 3,5 5,0 17,1 d B9 III B9 III 3,2 ± 0,7 2,5 ± 0,6 MKT 10 20113-0049 71 [3] (S), [1] (M, d)
Aql π Aql V 6,3 6,8 1,4″ 2019 G8 III A3 V STF 2583 19487+1149 160
Aql χ Aql V 5,4 6,6 0,4″ 2020 STT 380 19426+1150 260
Aql 5 Aql 1 (A/B) V 5,9 7,0 12,5″ 2019 kA3hA5VmA6 kA4hF0VmF3 STF 2379 18465-0058 94 [20] (SAa/Ab), [3] (UAa od. Ab)
2 (Aa/Ab) SI 5,9 6,8 0,0″ 2014 41 a Am Am MCA 53
3 (Aa oder Ab) SB . . 4,77 d Am
Aql 11 Aql O 5,3 9,3 20,8″ 2019 STF 2424 18591+1338 48
Aql 15 Aql O 5,5 7,0 39,6″ 2019 SHJ 286 19050-0402 95
Aql 18 Aql V 5,4 6,4 0,3″ 2015 210 a HEI 568 19070+1104 210
Aql 23 Aql V 5,3 8,3 3,2″ 2011 STF 2492 19185+0105 120
Aql 45 Aql SI 5,9 7,6 0,1″ 2020 10,2 a A3 IV CHR 88 19407-0037 110
Aql 57 Aql CPM 5,7 6,4 36,3″ 2019 B7 Vn B8 V STF 2594 19546-0814 140
Aql QS Aql 1 (A/B) V 6,7 6,8 0,1″ 2018 77 a B5 V + F3 B4 KUI 93 19411+1349 680 [21] (UAa/Ab, S)
2 (Aa/Ab) E/SB 6,7 . 2,51 d B5 V F3
Aql Gliese 752 / VB 10 CPM 9,1 17,4 75,8″ 2012 dM3,5 M8 Ve 0,5 0,09 LDS 6334 19169+0510 5,9 [22] (S, M)
Aqr δ Aqr I/A 3,3 . 1,3 a A3 V G5: 76 Aqr 22547-1549 35 [23] (S)
Aqr ζ Aqr 1 (ζ2 = A / ζ1 = B) V 4,3 4,5 2,4″ 2020 430 a F1 IV F3 IV Σ 2,0 1,4 STF 2909 22288-0001 28 [24] (S), [25] (M)
2 (Aa/Ab) SI 4,3 11,3 0,7″ 2020 25,1 a F1 IV 1,4 0,6 EBE 1
Aqr ξ Aqr SI/SB 4,8 7,0 0,0″ 2008 25,5 a MCA 68 21378-0751 55
Aqr ψ1 Aqr 1 (A/BC) CPM 4,4 9,9 48,9″ 2014 K1 III K1–2 V 1,4 ± 0,3 STFB 12 23159-0905 44 [26] (M)
2 (B/C) V 10,5 10,7 0,4″ 2020 84 a K1–2 V BU 1220
Aqr ψ3 Aqr V 5,0 9,0 1,5″ 2015 HO 199 23190-0937 73
Aqr ω2 Aqr V 4,5 9,9 5,5″ 2012 BU 279 23427-1433 46
Aqr 4 Aqr V 6,4 7,4 0,7″ 2020 200 a F7 IV F6: V: 1,6 1,3 STF 2729 20514-0538 61 [27] (M)
Aqr 12 Aqr 1 (A/B) V 5,8 7,5 2,5″ 2017 STF 2745 21041-0549 150
2 (Aa/Ab) SI 5,9 8,3 0,3″ 2017 MCA 66
Aqr 24 Aqr 1 (A/B) V 6,9 8,4 0,0″ 2020 48,7 a BU 1212 21395-0003 40 [3] (UAa/Ab)
2 (Aa/Ab) SB 6,9 . 5,88 d
Aqr 29 Aqr 1 (A/B) V 7,2 7,2 3,8″ 2016 A2 V + K0 III G0 II S 802 22024-1658 180 [21] (UAa/Ab, SAa/Ab)
2 (Aa/Ab) E/SB 7,2 . 0,95 d A2 V K0 III
Aqr 41 Aqr V 5,6 6,7 5,2″ 2015 K0 III F2 V H N 56 22143-2104 72
Aqr 51 Aqr V 6,5 6,6 0,5″ 2019 145 a A1 A1 2,5 2,4 BU 172 22241-0450 120 [11] (S, M)
Aqr 53 Aqr 1 (A/B) V 6,3 6,4 1,2″ 2019 2000 a G2 V G3 V SHJ 345 22266-1645 19 [3] (UBa/Bb)
2 (Ba/Bb) SB 6,4 . 257 d G2 V
Aqr 74 Aqr 1 (A/B) SI 5,8 6,4 0,1″ 2020 9,5 a B9p B Σ ≈ 15 MCA 73 22535-1137 170 [3] (UAa/Ab), [28] (S, M)
2 (Aa/Ab) SB 5,8 . 3,43 d B9p
Aqr 83 Aqr V 6,2 6,3 0,2″ 2018 21,8 a F2 V F2 V A 417 23052-0742 64 [24] (S)
Aqr 86 Aqr SI 4,8 6,8 0,2″ 2020 HDS 3293 23067-2345 56
Aqr 89 Aqr V 5,3 6,0 0,2″ 2018 108 a G2 III A2 V RST 3320 23099-2227 150
Aqr 94 Aqr 1 (A/B) V 5,2 7,0 12,1″ 2018 G5–8 IV + K2–3 K2 Σ 1,9 STF 2998 23191-1328 22 [29] (S, M)
2 (Aa/Ab) SI/SB 5,2 6,7 0,2″ 2020 6,3 a G5–8 IV K2–3 1,1 0,8 MCA 74
Aqr 97 Aqr V 5,6 6,7 0,1″ 2020 64 a A3 A8 2,0–3,7 1,6 HU 295 23227-1502 65 [11] (S, M)
Aqr 101 Aqr V 4,8 7,7 1,0″ 2009 B 1900 23333-2055 90
Aqr 107 Aqr V 5,7 6,5 7,0″ 2018 A9 IV F2 V H 2 24 23460-1841 62
Aqr R Aqr V(aO)/SB 7,7 . 44 a M6,5–8,5e D: 1,0–1,5 0,6–1,0 320 [30] (V), [31] (U, S2, M)
Aqr EZ Aqr 1 (AC/B) SI/SB 12,2 12,9 0,1″ 2020 2,3 a M4 V + M M Σ 0,22 0,12 BLA 10 22385-1519 3,4 [32] (S, M)
2 (A/C) SB 12,2 . 3,79 d M4 V M 0,12 0,10 Gl 866
Ara γ Ara CPM 3,3 10,2 18,4″ 2016 HJ 4942 17254-5623 340
Ara δ Ara A 3,6 . 2,9 a del Ara 17311-6041 61
Ara ε2 Ara 1 (A/C) CPM 5,4 13,5 113,6″ 2015 F5 VFe DA3,2 SKF 103 17031-5314 26
2 (Aa/Ab) SI 5,4 8,7 0,7″ 2020 41 a F5 VFe HDS 2412
Ara ν1 Ara (V539 Ara) 1 (A/B) V 5,7 9,2 12,3″ 2016 B3 V + B4 V A0–1 V Σ 11,5 HJ 4978 17505-5337 360 [21] (U, S), [33] (M, d)
2 (Aa/Ab) E/SB 5,7 . 3,17 d B3 V B4 V 6,2 5,3
Ara 41 Ara V 5,6 8,9 10,6″ 2019 610 a G9 V M0 VpCaCr BSO 13 17191-4638 8,8
Ara R Ara 1 (A/B) V 7,2 7,8 3,7″ 2016 B5 V + F1 IV Σ 6,5 HJ 4866 16397-5700 120 [34] (UAa/Ab, S, M)
2 (Aa/Ab) E/SB 7,2 . 4,43 d B5 V F1 IV 5 1,5
Ara HR 6477 1 (AB/C) CPM 5,2 7,1 102,5″ 2016 B8 V + B9 V B9,5 V DUN 216 17269-4551 190
2 (A/B) V 5,6 6,5 2,1″ 2016 B8 V B9 V HJ 4949
Ari β Ari I/SB 2,6 5,2 107 d A5 V 2,0 1,0 MKT 3 01546+2049 18 [1] (S, M, d)
Ari γ Ari V 4,5 4,6 7,4″ 2020 A2 IVpSiSrCr A0 Vnp STF 180 01535+1918 50
Ari ε Ari V 5,2 5,6 1,5″ 2019 710 a A2 IV A3 IVs STF 333 02592+2120 100
Ari λ Ari CPM 4,8 6,7 37,3″ 2019 H 5 12 01579+2336 39
Ari μ Ari SI 5,7 6,2 0,0″ 2020 8,8 a A1 V F2 V 3,4 ± 1,7 2,1 ± 1,7 BLA 1 02424+2001 140 [35] (S, M)
Ari π Ari V 5,3 8,0 3,3″ 2015 STF 311 02493+1728 240
Ari τ1 Ari V 5,3 8,1 0,9″ 2016 COU 259 03212+2109 160
Ari 1 Ari V 6,3 7,2 2,9″ 2018 K1 III A6 V STF 174 01501+2217 180 [13] (S)
Ari 10 Ari V 5,8 7,9 1,3″ 2018 330 a F8 IV F9 V STF 208 02037+2556 49 [24] (S)
Ari 21 Ari V 6,4 6,5 0,2″ 2014 23,6 a F5 V F5 V 1,4 1,4 COU 79 02157+2503 51 [36] (S, M)
Ari 30 Ari 1 (A/BC) CPM 6,5 7,0 37,9″ 2019 F5 V F8 V + M1 V Σ 1,6 STFA 5 02370+2439 45 [3] (UAa/Ab), [37] (SB/C, MB/C)
2 (Aa/Ab) SB 6,5 . 1,11 d F5 V
2 (B/C) V(aO) 7,0 11,0 0,6″ 2018 F8 V M1 V 1,1 0,5 RAO 8
Ari 31 Ari SI 5,7 5,8 0,0″ 2020 3,8 a F7 V F7 V Σ 3,4 MCA 7 02366+1227 35 [38] (S, M)
Ari 52 Ari 1 (AB/C) V 5,5 10,8 5,1″ 2005 B9 + B9 Σ 7,2 STF 346 03054+2515 170 [11] (S, M)
2 (A/B) V 6,2 6,2 0,5″ 2016 230 a B9 B9 3,6 3,6 STF 346
Ari 63 Ari SI 5,3 8,1 0,3″ 2012 HDS 423 03228+2045 97
Ari 66 Ari 1 (A/B) V 6,2 10,5 0,7″ 2018 BU 878 03284+2248 71
2 (Aa/Ab) SI 6,0 7,4 0,1″ 2008 BAG 2
Aur α Aur (Capella) 1 (A/HL) CPM 0,1 10,0 722,8″ 2013 G8 III + G0 III M2 + M4: Σ 5,1 Σ 1,1 FRH 1 05167+4600 13,2 [39] (VAa/Ab, UH/L, SAa/Ab, M, d), [40] (SH/L)
2 (Aa/Ab) I/SB 0,9 0,8 104 d G8 III G0 III 2,6 2,5 ANJ 1
2 (H/L) V 10,0 13,5 3,5″ 2015 ≈ 300 a M2 M4: 0,6 0,5 ST 3
Aur β Aur (Menkalinan) E/I/SB 3,3 3,5 3,96 d A1m A1m 2,4 2,3 KOE 1 05595+4457 25 [33] (S, M)
Aur ε Aur (Almaaz) E/SB/A 3,0 . 27,1 a F0 Ia ≈ 2 vs. 15 ≈ 6 vs. 14 eps Aur 05020+4349 1500 [41][42] (S, M), [43] (d)
Aur ζ Aur E/I/SB 3,8 . 2,7 a K4 Ib B6 V 5,6 4,7 MKT 6 05025+4105 240 [5] (S, M)
Aur θ Aur V 2,6 7,2 4,2″ 2019 470 a B9 IV G2 V STT 545 05597+3713 51 [24] (S)
Aur ψ5 Aur O 5,3 8,7 29,4″ 2013 SHJ 75 06467+4335 17
Aur ω Aur V 5,0 8,2 4,7″ 2019 A1 V F9 STF 616 04593+3753 50
Aur 5 Aur 1 (A/B) V 6,0 9,5 4,1″ 2017 1600 a F5 V 1,4 0,9 STT 92 05003+3924 57 [44] (M)
2 (Aa/Ab) SI 6,0 . 0,1″ 2018 F5 V CHR 159
Aur 14 Aur 1 (A/C) V 5,0 7,3 14,3″ 2019 A9 V F2 V + DA1,3 STF 653 05154+3241 82 [3] (UAa/Ab, UCa1/Ca2), [45] (UCa/Cb), [46] (SCa/Cb)
2 (Aa/Ab) SB 5,0 . 3,79 d A9 V
2 (Ca/Cb) V(HST) 7,3 14,1 2,0″ 1999 ≈ 1300 a F2 V DA1,3 BAS 5
3 (Ca1/Ca2) SB 7,3 . 2,99 d F2 V
Aur 16 Aur 1 (A/B) V 4,8 10,6 4,1″ 2002 STT 103 05182+3322 71
2 (Aa/Ab) SB/A 4,8 . 1,2 a
Aur 26 Aur 1 (AB/C) V 5,5 8,4 12,4″ 2019 ≈ 46 000 a G8 III + B9,5 V A6 V Σ 5,1 ± 1,4 2,1 STF 753 05386+3030 170 [47] (UAB/C, S, M)
1 (A/B) V 6,3 6,2 0,2″ 2010 53 a G8 III B9,5 V 2,1 ± 1,0 3,0 ± 0,4 BU 1240
Aur 41 Aur V 6,2 6,9 7,5″ 2019 STF 845 06116+4843 100
Aur 54 Aur V 6,2 7,9 0,8″ 2016 STT 152 06396+2816 260
Aur 60 Aur V 6,5 9,0 0,2″ 2012 270 a A8 G0 1,7 1,1 COU 1877 06532+3826 70 [11] (S, M)
Aur WW Aur E/SB 5,8 . 2,53 d A5m A7m 2,0 1,8 91 [30] (V), [33] (U, S, M)
Aur Gliese 268 SB 11,5 . 10,4 d dM5e dM5e 0,2 0,2 6,3 [30] (V), [3] (U, S), [48] (M, d)
Boo δ Boo CPM 3,6 7,9 105,0″ 2017 76 000 a G8 IIIFe G0 Vv STFA 27 15155+3319 37
Boo ε Boo (Izar) V 2,6 4,8 2,7″ 2020 K0 II–III A2 V STF 1877 14450+2704 62
Boo ζ Boo V 4,5 4,5 0,3″ 2019 125 a A2 III A2 III Σ ≈ 2,3 STF 1865 14411+1344 54 [24] (S), [12] (M)
Boo η Boo SB/A 2,7 . 1,4 a 1,7 0,6 eta Boo 13547+1824 11,4 [18] (M)
Boo ι Boo CPM 4,8 7,4 39,0″ 2020 A7 V K1 V STFA 26 14162+5122 29
Boo κ Boo 1 (κ2 = A / κ1 = B) V 4,5 6,6 13,8″ 2019 10 100 a A7 IV F2 V STF 1821 14135+5147 49 [3] (UBa/Bb)
2 (Ba/Bb) SB 6,6 . 4,9 a
Boo μ Boo 1 (μ1 = A / μ2 = B) CPM 4,3 7,0 109,0″ 2018 F0 IV G0 V Σ 3,2 ± 0,3 STFA 28 15245+3723 36 [9] (M)
2 (Aa/Ab) SI 4,3 . 0,1″ 2012 3,7 a F0 IV 3,2 ± 0,3 CHR 181
2 (Ba/Bb) V 7,1 7,6 2,3″ 2019 270 a G0 V STF 1938
Boo ν2 Boo SI 5,8 5,8 0,1″ 2015 9,0 a B9 A1 3,0 2,3 A 1634 15318+4054 130 [11] (S, M)
Boo ξ Boo V 4,8 7,0 5,2″ 2020 153 a G8 V K4 V 0,9 0,7 STF 1888 14514+1906 6,7 [49] (S, M)
Boo π1 Boo V 4,9 5,8 5,4″ 2020 STF 1864 14407+1625 88
Boo τ Boo V 4,5 11,1 1,5″ 2017 960 a F7 IV–V M3 V 1,4 0,4 STT 270 13473+1727 16 [50] (M)
Boo 44 Boo 1 (A/BC) V 5,2 6,1 0,3″ 2019 210 a G1 V G 1,0 Σ 1,6 STF 1909 15038+4739 13 [51] (UB/C, S, M)
2 (B/C) E/SB 6,1 . 0,27 d G 1,0 0,6
Boo 1 Boo V 5,8 9,6 4,4″ 2019 A1 V A2 STF 1772 13407+1957 98
Boo 3 Boo SB 6,0 . 36,0 d G0 IV F2p 1,8 1,6 95 [30] (V), [5] (S, M)
Boo 12 Boo I/SB 4,8 . 9,60 d F8 IV F9 IVw 1,4 1,4 ISO 14 14104+2506 36 [33] (S, M)
Boo 15 Boo V 5,4 8,4 0,8″ 2015 KUI 66 14148+1006 84
Boo 39 Boo V 6,3 6,7 2,6″ 2020 2100 a F6 V F5 V STF 1890 14497+4843 69 [13] (S)
Boo HP Boo 1 (A/BC) V(aO) 5,9 13,9 2,6″ 2009 28 000 a G2 V L4 + L4 1,0 Σ 0,11 POT 1 14503+2355 18 [52] (S, M)
2 (B/C) V(aO) 13,9 14,2 0,1″ 2013 10,3 a L4 L4 0,06 0,05 POT 1
Boo HR 5138 V 6,4 6,5 0,1″ 2020 22,5 a F0 IV F2 IV Σ 2,4 ± 0,4 BU 612 13396+1045 60 [24] (S), [53] (M)
Boo HR 5386 1 (A/BC) V 5,0 6,8 6,4″ 2020 A0 V F0 V + F2 V STF 1835 14234+0827 69 [24] (SB/C)
2 (B/C) V 7,4 7,7 0,3″ 2020 40 a F0 V F2 V BU 1111
Cae γ1 Cae V 4,7 8,2 3,2″ 2001 JC 9 05044-3529 56
Cam 1 Cam O? 5,8 6,8 10,4″ 2018 O9,7 IIn B1 IV: STF 550 04320+5355 770
Cam 2 Cam 1 (AB/C) V 5,6 7,5 0,8″ 2016 480 a STF 566 04400+5328 65
2 (A/B) V 5,9 7,4 0,0″ 2014 26,7 a STF 566
Cam 7 Cam 1 (A/B) V 4,5 7,9 0,6″ 2011 2700 a D 5 04573+5345 110 [3] (UAa/Ab)
2 (Aa/Ab) SB 4,5 . 3,89 d
Cam 11 / 12 Cam 1 (11 / 12 Cam) CPM 5,2 6,2 177,7″ 2017 B3 Ve K0 IIIe Σ 1,6 STFA 13 05061+5858 220 [54] (U, M)
2 (12 Cam) SB 6,2 . 80,9 d K0 IIIe 1,1 0,5
Cam 19 Cam V 6,2 9,8 1,5″ 2015 HU 1107 05373+6409 98
Cam HR 4892 1 (A/B) V 5,3 5,7 21,8″ 2017 A0 V A2 V STF 1694 12492+8325 130 [3] (UAa/Ab)
2 (Ba/Bb) SB 5,7 . 3,29 d A2 V
Cam Stein 2051 V 11,4 12,1 11,0″ 2020 1800 a M4 Ve DC5 0,2 0,7 STI 2051 04312+5858 5,5 [55] (M)
Cap α Cap (Algiedi) - (α2 / α1) O 3,7 4,3 381,2″ 2012 G9 III G3 Ib STFA 51 20181-1233 32
1 (α1 Cap Aa/Ab) V 4,4 8,6 0,8″ 2002 G3 Ib WZ 15 20176-1230 270
Cap β Cap (Dabih) 1 (β1 = A / β2 = B) CPM 3,2 6,1 205,4″ 2012 K0 II–III + B8 V + G: V: B9–A0 III–IV Σ 7,9 ± 0,4 STFA 52 20210-1447 170 [3] (UAb1/Ab2), [56] (SAa/Ab, SAb1/Ab2, M)
2 (Aa/Ab) SI/SB 3,1 4,9 0,0″ 2019 3,8 a K0 II–III B8 V 3,7 ± 0,2 Σ 4,2 ± 0,2 BLA 7
2 (Ba/Bb) V 6,2 9,1 0,4″ 2020 540 a B9–A0 III–IV BAR 12
3 (Ab1/Ab2) SB 4,9 . 8,68 d B8 V G: V: ≤ 3,4 ≥ 0,8
Cap γ Cap A 3,7 . 2,2 a gam Cap 21401-1640 48
Cap ζ Cap SB/A 3,8 . 6,5 a G8 IIIp DA2,2 zet Cap 21267-2225 120 [46] (S)
Cap η Cap SI 5,0 7,4 0,3″ 2020 27,9 a A4 V F2 V 2,0 ± 0,2 1,2 ± 0,1 FIN 328 21044-1951 51 [12] (S), [16] (M, d)
Cap ο Cap V 5,9 6,7 22,0″ 2019 A1 V A7–8 V SHJ 324 20299-1835 72
Cap π Cap V 5,1 8,5 3,5″ 2019 BU 60 20273-1813 200
Cap ρ Cap V 5,0 6,9 1,7″ 2018 380 a SHJ 323 20289-1749 30
Cap τ Cap V 5,4 7,3 0,4″ 2019 420 a B4 IV B6 IV HU 200 20393-1457 350 [24] (S)
Car ε Car (Avior) SI 2,3 3,9 0,4″ 2019 K3: III B2: V HDS 1190 08225-5931 190
Car θ Car SB/A 2,8 . 2,2 a B0,2 V ≈ 15 the Car 10430-6424 140 [57] (S, M)
Car υ Car V 3,0 6,0 5,1″ 2015 RMK 11 09471-6504 440
Car 128 G. Car 1 (AB/C) V 5,4 12,3 18,8″ 2015 F3–4 V + F8–G7 V Σ 2,5 ± 0,6 I 358 09173-6841 34 [16] (S, M, d)
2 (A/B) SI 5,8 7,1 0,1″ 2020 3,4 a F3–4 V F8–G7 V 1,4 ± 0,3 1,1 ± 0,3 FIN 363
Car b1 Car CPM 4,9 6,6 40,1″ 2010 B2 V B8 IV: DUN 74 08570-5914 240
Car e2 Car SI 5,1 8,0 0,3″ 2015 HDS 1233 08353-5801 69
Car V415 Car E/SB/A 4,5 7,7 195 d G6 II A1 V 3,2 2,0 V415 Car 06499-5337 170 [5] (S, M)
Car HR 2814 V 6,0 6,5 9,1″ 2015 1 000 000 a F5 V F9 V RMK 6 07204-5219 37
Car HR 3863 V 5,9 6,5 0,1″ 2019 10,6 a A3 IV Σ 5,8 ± 0,6 B 780 09407-5759 68 [58] (M)
Cas γ Cas 1 (A/B) V 2,2 10,9 2,1″ 2002 B0,5 IVe F6 V Σ ≈ 16 BU 1028 00567+6043 190 [59] (UAa/Ab, SA, M), [60] (SB)
2 (Aa/Ab) SB 2,2 . 204 d B0,5 IVe ≈ 15 ≈ 0,8
Cas η Cas V 3,5 7,4 13,6″ 2020 480 a G3 V K7 V 1,0 0,6 STF 60 00491+5749 6,0 [49] (S, M)
Cas ι Cas 1 (AB/C) V 4,5 9,1 6,7″ 2015 A3 + G6 + F5 K4 + M2 STF 262 02291+6724 41 [61][62] (S, M)
2 (A/B) V 4,6 6,9 2,9″ 2017 2400 a A3 + G6 F5 Σ 2,7 ± 0,4 STF 262
2 (Ca/Cb) V(aO) 9,1 . 0,2″ 2018 K4 M2 CTU 2
3 (Aa/Ab) SI 4,6 8,5 0,6″ 2010 48 a A3 G6 2,0 ± 0,3 0,7 CHR 6
Cas λ Cas V 5,3 5,6 0,2″ 2010 250 a B7,5 V B8,5 V 3,4 3,1 STT 12 00318+5431 120 [24] (S), [11] (M)
Cas μ Cas SI/SB 5,3 10,7 0,6″ 2016 21,6 a G5 V dM 0,7 0,2 WCK 1 01083+5455 7,6 [63] (S, M)
Cas ο Cas I/SB 4,6 7,5 2,8 a NOI 3 00447+4817 220
Cas σ Cas V 5,0 7,2 3,1″ 2017 STF 3049 23590+5545 1400
Cas 6 Cas V 5,7 8,0 1,5″ 2015 STT 508 23488+6213 1900
Cas 47 Cas SI 5,4 7,6 0,1″ 2014 4,4 a LSC 19 02051+7717 33
Cas 48 Cas 1 (AB/C) CPM 4,5 13,2 22,8″ 2015 A2 V + F2 V Σ 3,1 BU 513 02020+7054 35 [24] (S), [64] (M)
2 (A/B) V/SB 4,7 6,7 0,6″ 2013 61 a A2 V F2 V 1,9 1,2 BU 513
Cas 55 Cas SI 6,4 7,6 0,1″ 2011 41 a F9 II A2 Vn MCA 6 02145+6631 290
Cas AR Cas 1 (AB/CD) CPM 4,9 7,2 75,0″ 2018 B3 V B9 V SHJ 355 23300+5833 180 [65] (UAa/Ab, SAa/Ab, MAa/Ab)
2? (AB/F) CPM 4,9 10,6 67,2″ 2012 B3 V A0 HJ 1888
2? (AB/G) CPM 4,9 11,1 66,9″ 2012 B3 V B3 HJ 1888
2 (A/B) V 4,9 9,3 0,9″ 2002 B3 V Σ 7,8 STT 496
2 (C/D) V 7,2 9,1 1,3″ 2015 B9 V DA 2
3 (Aa/Ab) E/SB 4,9 . 6,07 d B4 V A6 V 5,9 1,9
Cas V773 Cas 1 (A/B) V 6,3 8,7 0,6″ 2010 185 a A3 V F0–5 BU 870 01443+5732 87 [21] (UAa/Ab)
2 (Aa/Ab) E 6,3 . 1,29 d A3 V
Cas HR 5 1 (A/B) V 6,4 7,3 1,5″ 2020 107 a G4 V K0 V + M2 V 0,9 Σ 1,3 STF 3062 00063+5826 21 [3] (UBa/Bb), [2] (S, M)
2 (Ba/Bb) SB 7,3 . 47,7 d K0 V M2 V 0,8 0,5
Cen α Cen (Alpha Centauri) 1 (AB / C = Proxima Centauri) CPM −0,3 11,1 2,2° 550 000 a G2 V + K1 V M5,5 V Σ 2,0 0,12 LDS 494 14396-6050 1,3 [33] (SA/B, MA/B), [66] (SC, MC)
2 (A/B) V/SB 0,0 1,3 5,2″ 2019 80 a G2 V K1 V 1,1 0,9 RHD 1
Cen β Cen (Agena) 1 (A/B) V 0,6 4,0 0,3″ 2018 ≈ 170 a B1 III + B1 III B Σ 22,6 ± 0,3 VOU 31 14038-6022 120 [67] (UA/B, S, M)
2 (Aa/Ab) I/SB 1,3 1,4 357 d B1 III B1 III 12,0 10,6 RBT 1
Cen γ Cen V 2,8 2,9 0,4″ 2020 84 a A0 III A0 III HJ 4539 12415-4858 40 [24] (S)
Cen δ Cen O 2,5 4,4 269,1″ 1999 B2 Vne B3–5 III JC 2 12084-5043 130
Cen κ Cen 1 (A/B) V 3,1 11,5 4,0″ 2000 I 1260 14592-4206 120
2 (Aa/Ab) SI 3,3 4,7 0,1″ 2020 59 a HDS 2116
Cen π Cen V 4,1 5,7 0,3″ 2019 39 a B9 V 6,4 3,7 I 879 11210-5429 110 [68] (S, M)
Cen d Cen V 4,6 5,0 0,2″ 2020 83 a G7 III G9 III SEE 179 13310-3924 280 [24] (S)
Cen D Cen V 5,8 7,0 2,7″ 2015 RMK 14 12140-4543 180
Cen Q Cen V 5,2 6,5 5,6″ 2016 B8,5 Vn A2,5 Va DUN 141 13417-5434 83
Cen y Cen V 6,3 6,4 1,0″ 2020 360 a F0 F1 1,5 1,5 HWE 28 13535-3540 52 [11] (S, M)
Cen 3 Cen O 4,5 6,0 7,8″ 2015 B5 III B9 IV H 3 101 13518-3300 110
Cen 4 Cen 1 (A/B) V 4,7 8,5 14,8″ 2013 B5 IVp A3 Vm H N 51 13532-3156 170 [3] (U)
2 (Aa/Ab) SB 4,7 . 6,93 d B5 IVp
2 (Ba/Bb) SB 8,5 . 4,84 d A3 Vm
Cen 46 Cen V 5,2 7,7 1,3″ 1995 HJ 4409 11073-4238 89
Cen V831 Cen 1 (AB/C) V 4,6 8,4 1,9″ 2019 ≈ 2000 a B8 V Σ 9,4 ≈ 1,5 I 424 13123-5955 110 [69] (UAB/C, UAa/Ab, S, M, d)
2 (A/B) V 5,3 6,0 0,1″ 2019 27,4 a B8 V Σ 7,4 ≈ 2,0 SEE 170
3 (Aa/Ab) E/SB 5,3 . 0,64 d B8 V 4,1 3,3
Cen HR 4453 V 6,1 6,2 0,5″ 2019 I 78 11336-4035 120
Cep β Cep 1 (A/B) V 3,2 8,6 13,5″ 2016 B2 III + B5 Ve A0 V Σ 17 ± 4 3,1 ± 0,3 STF 2806 21287+7034 210 [70] (SAa/Ab, MAa/Ab), [2] (SB, MB)
2 (Aa/Ab) SI/SB 3,2 6,6 0,2″ 2007 83 a B2 III B5 Ve 12,6 ± 3,2 4,4 ± 0,7 LAB 6
Cep γ Cep V(aO)/SB 3,2 > 7,3 0,9″ 2006 68 a K1 III–IV M4 1,4 0,4 NHR 9 23393+7738 14 [13] (V1), [71] (S, M)
Cep κ Cep V 4,4 8,3 7,3″ 2015 B9 III A7 V STF 2675 20089+7743 99
Cep ξ Cep 1 (A/B) V 4,5 6,4 8,1″ 2019 2500 a kA2,5hF2mF2(IV) F8 V Σ 1,4 STF 2863 22038+6438 30 [10] (M)
2 (Aa/Ab) SI/SB 4,8 6,3 0,1″ 2012 2,2 a kA2,5hF2mF2(IV) 1,0 0,4 MCA 69
Cep ο Cep V 5,0 7,3 3,4″ 2018 2200 a STF 3001 23186+6807 62
Cep π Cep 1 (A/B) V 4,6 6,8 1,1″ 2016 176 a G2 III A9 V Σ 6,9 ± 0,7 1,9 ± 0,2 STT 489 23079+7523 76 [72] (S, M)
2 (Aa/Ab) SB/A 4,4 . 1,5 a G2 III 3,6 ± 0,5 3,3 ± 0,5
Cep VV Cep E/SB 5,4 . 20,3 a M2 Iab B 2,5 vs. 20 8 vs. 20 WRH 36 21567+6338 1500 [73][74] (M), [75] (S, d)
Cep HR 1230 V 5,6 6,3 0,8″ 2012 370 a G8 III A3,5 IV: STF 460 04100+8042 120
Cep HR 8357 O 5,6 6,4 18,1″ 2018 STF 2840 21520+5548 200
Cep Kruger 60 V 9,9 11,4 1,5″ 2016 44,7 a M3 V M4 V 0,3 0,18 KR 60 22280+5742 4,0 [76] (M)
Cet γ Cet 1 (AB/C) CPM 3,5 10,2 843,1″ 2000 A2 Vn + F4 V K5 V ALD 124 02433+0314 24
2 (A/B) V 3,5 6,2 1,9″ 2020 A2 Vn F4 V STF 299
Cet ε Cet SI/SB 5,2 6,5 0,1″ 2020 2,7 a F2 V F7–G4 V 1,4 1,0 FIN 312 02396-1152 24 [16] (S, M)
Cet μ Ceti SI/SB 4,2 6,2 0,2″ 2020 3,3 a A9 IIIP TOK 1 02449+1007 26 [3] (U)
Cet ν Cet 1 (A/B) V 5,0 9,1 8,4″ 2011 STF 281 02359+0536 100 [3] (UAa/Ab)
2 (Aa/Ab) SB 5,0 . 2,0 a
Cet ξ1 Cet SI/SB 4,3 . 0,1″ 2007 4,5 a MCA 5 02130+0851 100
Cet ο Cet (Mira) V 6,8 10,4 0,5″ 2014 500 a M5–9 IIIe DA 1,2 JOY 1 02193-0259 92 [77] (M)
Cet 10 Cet SI 6,5 8,9 0,5″ 2020 HDS 61 00266-0003 140
Cet 13 Cet 1 (A/B) V/SB 5,6 6,9 0,2″ 2020 6,9 a F9 V + K0 V G6 V Σ 1,8 0,9 HO 212 00352-0336 21 [3] (UAa/Ab), [2] (S, M)
2 (Aa/Ab) SB 5,6 . 2,08 d F9 V K0 V 1,0 0,8
Cet 26 Cet V 6,1 9,5 16,0″ 2015 A8 IV G8 V STF 84 01038+0122 59
Cet 37 Cet 1 (A/B) CPM 5,2 7,9 47,1″ 2018 STFA 3 01144-0755 24
2 (Aa/Ab) SI 5,2 9,7 0,2″ 2013 WSI 70
Cet 42 Cet 1 (A/BC) V 6,5 7,0 1,6″ 2020 650 a G8 III A7 V + A: Σ 1,8 ± 0,6 STF 113 01198-0031 100 [20] (S, M)
2 (B/C) SI 7,4 7,6 0,1″ 2020 27 a A7 V A: 1,8 ± 0,6 FIN 337
Cet 84 Cet V 5,8 9,7 3,6″ 2012 3200 a STF 295 02412-0042 23
Cet 94 Cet V 5,1 11,0 2,2″ 2015 1400 a HJ 663 03128-0112 23
Cet 95 Cet V 5,6 8,0 1,2″ 2017 390 a K0 IV G8 V AC 2 03184-0056 64 [24]
Cet HR 159 V/SB 6,6 6,2 0,2″ 2020 25,0 a G8 V G8 V 0,9 0,7 BU 395 00373-2446 15 [1] (S, M, d)
Cet HR 492 V 6,1 7,2 0,1″ 2020 630 a F5 V F7 V STF 147 01417-1119 39
Cet GJ 1005 SI 11,0 11,4 0,4″ 2020 4,6 a M3,5 V M 0,18 0,12 HEI 299 00155-1608 5,0 [78] (S, M)
Cet Luyten 726-8 V 12,7 13,2 1,9″ 2020 26,3 a M5,5 V M6 V 0,10 0,10 LDS 838 01388-1758 2,7 [76] (M)
Cha δ1 Cha V 6,2 6,5 0,8″ 2019 I 294 10453-8028 110
Cha ε Cha 1 (AB/C) CPM 4,9 6,6 134,0″ 2015 B9 V + B9 V + B9 V A0 FGL 1 11596-7813 110 [79] (U, S, M)
2 (A/B) V 5,3 6,0 0,2″ 2020 ≈ 920 a B9 V + B9 V B9 V Σ ≈ 5 HJ 4486
3 (Aa/Ab) SI 6,0 6,2 0,0″ 2020 13 a B9 V B9 V ≈ 2,5 ≈ 2,5 HJ 4486
Cir α Cir V 3,2 8,5 15,7″ 2016 A7 VpSrCrEu K5 V DUN 166 14425-6459 17
Cir γ Cir V 4,9 5,7 0,8″ 2019 260 a B3–4 V F8 V HJ 4757 15234-5919 140
Cir θ Cir SI 5,9 5,9 0,1″ 2020 40 a B3 Ve Σ 40 ± 18 FIN 372 14567-6247 460 [20] (S, M)
Cir 26 G. Cir 1 (A/B) SI 6,2 8,7 0,3″ 2018 F8 II + B6 Σ 10,2 HDS 2100 14526-6349 530 [19] (U, S, M, d)
2 (Aa/Ab) I 6,2 . 17,9 a F8 II B6 5,2 5,0 GAA 1
CMa α CMa (Sirius) V −1,5 8,4 11,2″ 2020 50 a A1 V DA2 2,1 1,0 AGC 1 06451-1643 2,6 [80] (S, M)
CMa ε CMa V 1,5 7,5 7,9″ 2008 CPO 7 06586-2858 120
CMa ζ CMa - (A/B) O 3,0 7,8 169,6″ 2016 B2,5 V K1 III SMY 1 06203-3004 110 [3] (UAa/Ab)
1 (Aa/Ab) SI/SB 3,6 3,8 0,0″ 2020 1,9 a B5,5 V TOK 821 06203-3004 220
CMa η CMa O 2,5 6,8 177,0″ 2020 B5 Ia A0 V SMY 2 07241-2918 610
CMa μ CMa V 5,3 7,1 2,9″ 2017 STF 997 06561-1403 280
CMa ν1 CMa V 5,8 7,4 17,4″ 2019 G8–K0 III F–G SHJ 73 06364-1840 81
CMa π CMa V 4,7 9,6 11,6″ 2015 H N 123 06556-2008 30
CMa τ CMa 1 (A/E) SI 4,4 9,7 0,9″ 2018 O9,2 + O9 III B2: V TOK 42 07187-2457 1500 [81] (U, S, d)
2 (Aa/Ab) SI 4,9 5,3 0,1″ 2018 O9,2 O9 III FIN 313
3 (Aa) SB 4,9 . 155 d O9,2
4 (Aa) E 4,9 . 1,28 d O9,2
CMa 27 CMa SI 5,4 4,9 0,1″ 2020 119 a B4Ve(shell) FIN 323 07143-2621 530
CMa 29 CMa (UW CMa) E/SB 5,0 . 4,39 d O7,5–8 Iabf O9,7 Iab ≈ 16 ≈ 19 1500 [82] (U, S, M)
CMa HR 2522 V 5,6 7,2 0,4″ 2015 580 a AC 4 06490-1509 160
CMi α CMi (Prokyon) V 0,5 10,8 3,8″ 2014 41 a F5 IV–V DQZ 1,5 0,6 SHB 1 07393+0514 3,5 [83] (S, M)
CMi η CMi V 5,3 11,1 4,3″ 2015 BU 21 07280+0657 97
CMi HR 2950 V 6,6 7,0 0,9″ 2019 1250 a STF 1126 07401+0514 79
Cnc ζ Cnc 1 (ζ1 = AB / ζ2 = CD) V 4,9 5,9 6,0″ 2020 740 a F8 V + G5 V G0 V + M2 V Σ 2,6 Σ 2,0 STF 1196 08122+1739 25 [18][84] (S, M)
2 (A/B) V 5,3 6,3 1,2″ 2020 59,4 a F8 V G5 V 1,3 1,2 STF 1196
2 (C/D) SI 6,2 7,1 0,3″ 2020 17,3 a G0 V M2 V 1,2 0,8 HUT 1
Cnc ι Cnc V 4,1 6,0 30,7″ 2018 G8 IIIa A2 V STF 1268 08467+2846 100
Cnc κ Cnc SI 5,3 8,8 0,1″ 2019 CHR 257 09077+1040 150
Cnc π1 Cnc 1 (A/E) CPM 6,6 17,0 43,0″ 1997 G8 V + G8 V L8 + T Σ 1,8 Σ ≈ 0,08–0,14 WIL 1 09123+1500 20 [1] (SAa/Ab, MAa/Ab, d), [85] (UEa/Eb, SEa/Eb, MEa/Eb)
2 (Aa/Ab) SI/SB 7,2 7,2 0,1″ 2019 2,7 a G8 V G8 V 0,9 0,9 FIN 347
2 (Ea/Eb) V(aO) 17,0 . 0,5″ 2004 ≈ 140–180 a L8 T ≈ 0,04–0,07 ≈ 0,04–0,07 BUG 16
Cnc φ2 Cnc V 6,2 6,2 5,2″ 2019 A5 IV A2 Vp STF 1223 08268+2656 85
Cnc 21 Cnc V 6,3 9,4 1,3″ 2019 A 2961 08239+1038 250
Cnc 24 Cnc 1 (A/BC) V 6,9 7,5 5,7″ 2019 F0 V F7 V STF 1224 08267+2432 80
2 (B/C) V 8,5 8,5 0,2″ 2007 21,8 a F7 V A 1746
Cnc 55 (ρ1) Cnc CPM 6,0 13,2 85,1″ 2012 K0 IV–V M4,5 V 1,0 0,3 LDS 6219 08526+2820 13 [86] (M1), [87] (M2)
Cnc 57 Cnc V 6,1 6,4 1,5″ 2019 2300 a STF 1291 08542+3035 140
Cnc 66 Cnc V 6,0 8,6 4,4″ 2017 STF 1298 09014+3215 150
Cnc 75 Cnc SB/A 6,0 . 19,4 d G5 IV–V 1,2 1,0 75 Cnc 09088+2638 31 [88] (S, M, d)
Cnc GJ 1116 V 13,4 13,4 2,6″ 2020 124 a M7 V M7 V LDS 3836 08582+1945 5,3
Cnc HM Cnc SB 20 . 0,004 d D D 0,6 0,3 5000 [30] (V), [89] (U, S, M, d)
Col δ Col SB/A 3,9 . 2,4 a del Col 06221-3326 62
Col HR 2424 1 (AB/C) V 5,5 11,5 21,0″ 1999 HJ 3875 06354-3647 160
2 (A/B) V 5,9 6,9 1,6″ 2015 BU 755
Col HR 2431 1 (A/B) CPM 6,4 7,3 287,2″ 2015 F9 V + G1 V G2 V Σ 2,3 Σ 1,9 SHY 185 06359-3605 40 [24] (SAa/Ab), [11] (MAa/Ab), [68] (MBa/Bb)
2 (Aa/Ab) SI 6,7 8,2 0,1″ 2020 28,9 a F9 V G1 V 1,2 1,1 FIN 19
2 (Ba/Bb) V 7,8 8,6 0,1″ 2020 14,0 a G1 V 1,1 0,8 RST 4816
Com α Com V 4,9 5,5 0,6″ 2019 25,9 a F5 V F6 V 1,2 1,1 STF 1728 13100+1732 18 [90] (S, M)
Com 2 Com V 6,2 7,5 3,4″ 2020 STF 1596 12043+2128 100
Com 12 Com SB 4,9 . 1,1 a G7 III A3 IV 2,6 2,1 12225+2551 85 [5] (S, M)
Com 23 Com SI 5,0 6,9 0,4″ 2020 36 a WRH 12 12349+2238 95
Com 24 Com V 5,1 6,3 20,2″ 2018 K0 II–III A9 V STF 1657 12351+1823 120
Com 35 Com 1 (AB/C) V 5,2 9,8 28,5″ 2016 K0 III + F3 V STF 1687 12533+2115 87 [24] (S), [3] (UAa/Ab)
2 (A/B) V 5,2 7,1 1,3″ 2019 490 a K0 III F3 V STF 1687
3 (Aa/Ab) SB 5,2 . 8,0 a K0 III
Com 39 Com 1 (A/B) V 6,0 8,8 1,8″ 2019 COU 11 13064+2109 50
2 (Aa/Ab) SI 6,1 . 0,0″ 2009 CHR 150
Com Gliese 505 V 6,7 9,5 7,6″ 2018 610 a K1 V M1 V 0,7 0,5 BU 800 13169+1701 11,0 [24] (S), [91] (MA), [87] (MB)
CrA γ CrA V 4,5 6,4 1,5″ 2020 122 a F8 V F8 V 1,2 1,2 HJ 5084 19064-3704 17 [60] (S), [11] (M)
CrA κ CrA CPM 5,6 6,2 20,5″ 2018 B9 V B8–A1 DUN 222 18334-3844 210
CrA HR 6749 V 5,7 5,7 1,8″ 2019 450 a A5 V A5 V HJ 5014 18068-4325 45 [24] (S)
CrB α CrB (Gemma) E/SB/A 2,2 . 17,4 d A0 V G5 V 2,6 0,9 alp CrB 15347+2643 23 [92] (S, M)
CrB β CrB SI/SB 3,7 5,2 0,3″ 2019 10,5 a A5 F2 2,1 1,4 JEF 1 15278+2906 34 [93] (S, M)
CrB γ CrB V 4,0 5,6 0,5″ 2015 91 a B9 IV A3 V 2,8 1,7 STF 1967 15427+2618 45 [24] (S), [11] (M)
CrB ζ2 CrB V 5,0 5,9 6,3″ 2019 B7 V B9 V STF 1965 15394+3638 150
CrB η CrB V/SB 5,6 6,0 0,4″ 2019 41,6 a G1 V G3 V 1,2 1,1 STF 1937 15232+3017 18 [24] (S), [9] (M)
CrB θ CrB V 4,3 6,3 0,8″ 2016 COU 610 15329+3122 120
CrB σ CrB 1 (σ2/1 = AB / E) CPM 5,1 12,3 634,8″ 2015 F6 V + G1 V M2,5 V Σ 3,2 Σ 0,5 STF 2032 16147+3352 21 [94] (S, M)
2 (σ2 = A / σ1 = B) V 5,6 6,5 7,2″ 2019 670 a F6 V G1 V Σ 2,2 1,0 STF 2032
2 (Ea/Eb) SI 12,4 15,0 0,5″ 2018 52 a M2,5 V 0,4 0,1 YSC 152
3 (Aa/Ab) I/SB 5,6 . 1,14 d F6 V 1,1 1,1
Crt ζ Crt SI 5,0 7,8 0,3″ 2018 HDS 1658 11448-1821 100
Crt ψ Crt V 6,2 8,3 0,2″ 2018 370 a B9 V A1 V BU 220 11125-1830 150 [24] (S)
Cru α Cru (Acrux) 1 (AB/C) CPM 0,7 4,8 89,0″ 2020 B0,5 IV + B1 V B3–5 V DUN 252 12266-6306 99 [3] (UAa/Ab), [95] (UCa/Cb)
2 (α1 = A / α2 = B) V 1,3 1,6 3,5″ 2020 B0,5 IV B1 V DUN 252
3 (Aa/Ab) SB 1,3 . 75,8 d B0,5 IV
3 (Ca/Cb) SB 4,8 . 1,23 d B3–5 V
Cru γ Cru O 1,8 6,5 133,2″ 2018 M3,5 III A3 V DUN 124 12312-5707 27
Cru μ Cru CPM 3,9 5,0 34,5″ 2020 B2 IV–V B5 Vne DUN 126 12546-5711 130
Crv δ Crv V 3,0 8,5 24,2″ 2020 SHJ 145 12299-1631 27
Crv VV Crv 1 (AB/C) CPM 5,1 10,3 45,9″ 2016 F5 V + F4 IVn STF 1669 12413-1301 77 [3] (UAa/Ab), [96] (UA/B, UBa/Bb)
2 (A / B = VV Crv) V 5,9 5,9 5,3″ 2020 ≈ 3500 a F5 V F4 IVn STF 1669
3 (Aa/Ab) SB 5,9 . 44,5 d F5 V Σ 3,5
3 (Ba/Bb) E/SB 5,9 . 3,14 d F4 IVn 2,0 1,5
CVn α CVn (Cor Caroli) V 2,9 5,5 19,3″ 2020 A0 VpSiEu F2 V STF 1692 12560+3819 35
CVn 2 CVn V 5,9 8,7 11,6″ 2017 M0,5 III F7 V STF 1622 12161+4040 200
CVn 17 / 15 CVn 1 (17 = A / 15 = BC) O 6,0 6,3 275,6″ 2012 A9 III–IV B7 III STFA 24 13101+3830 60
2 (B/C) V 6,3 9,2 1,3″ 2016 B7 III BU 608 13101+3830 1140
CVn 19 CVn SI 5,9 9,5 0,6″ 2012 220 a CHR 180 13155+4051 73
CVn 25 CVn V 5,0 7,0 1,6″ 2019 240 a A6 III F0 V STF 1768 13375+3618 61 [24] (S)
CVn HR 5110 (BH CVn) E/SB/A 5,0 . 2,61 d F2 IV K0 IV 1,5 0,8 BH CVn 13348+3711 46 [97] (S, M)
Cyg β Cyg (Albireo) 1 (β1 = A / β2 = B) O? 3,2 4,7 34,6″ 2020 K3 II + B9,5 V B8 Ve Σ 9,5  +5,9−3,3 3,7 ± 0,1 STFA 43 19307+2758 100 [98] (U, M)
2 (Aa/Ac) SI 3,4 5,2 0,3″ 2020 122 a K3 II B9,5 V 4,2  +2,9−1,6 5,2  +3,1−1,7 MCA 55 19307+2758 120
Cyg δ Cyg V 2,9 6,3 2,7″ 2017 660 a B9 III F1 V STF 2579 19450+4508 51 [24] (S)
Cyg ζ Cyg V(HST)/
SB
3,2 13,2 17,8 a G8 IIIp DA4,2 BAS 7 21129+3014 44 [3] (U), [46] (S)
Cyg λ Cyg 1 (A/B) V 4,7 6,3 0,9″ 2018 800 a B4 V B7 V Σ 10,6 7,4 STT 413 20474+3629 240 [24] (S), [99] (M)
2 (Aa/Ab) SI 5,4 5,8 0,0″ 1991 11,6 a B4 V 5,3 5,3 MCA 63
Cyg μ Cyg V 4,8 6,2 1,6″ 2019 690 a F4 V G2 V STF 2822 21441+2845 22 [24] (S)
Cyg ο1 Cyg E/SI/SB 3,9 . 0,0″ 1985 10,0 a K4 Ib B3–4 11,7 7,1 WRH 33 20136+4644 230 [100] (S, M)
Cyg ο2 Cyg E/SB/A 4,2 8,4 3,1 a K4–5 Ib B6–7 9,7 4,8 20155+4743 470 [100] (S, M)
Cyg τ Cyg 1 (AB/F) CPM 3,7 12,0 89,5″ 2012 F0 V + G0 V M3 Σ 2,7 AGC 13 21148+3803 20 [40] (S), [18] (M)
2 (A/B) V 3,8 6,6 1,1″ 2017 49,5 a F0 V G0 V 1,7 1,0 AGC 13
2 (Fa/Fb) SI 12,2 13,8 0,4″ 2018 M3 JOD 20
Cyg φ Cyg SI/SB 4,9 5,1 0,0″ 1994 1,2 a K0 III K0 III 2,2 2,1 MCA 57 19394+3009 74 [101] (S, M)
Cyg ψ Cyg 1 (A/B) V 5,0 7,5 2,9″ 2017 A2 IV–V F4 V STF 2605 19556+5226 85 [24] (S)
2 (Aa/Ab) SI 5,6 6,1 0,1″ 2010 54 a F4 V YR 2
Cyg 9 Cyg SI/SB 5,9 6,5 0,0″ 1994 4,6 a G8 IIIa A2 V 2,8 2,6 WRH 32 19348+2928 180 [5] (S, M)
Cyg 16 Cyg 1 (AC/B) V 6,0 6,2 39,7″ 2020 13 500 a G1,5 Vb + M G2,5 V Σ 1,5 1,0 STFA 46 19418+5032 21 [13] (SA/B), [102] (UA/C, SC, MC), [103] (MA/B)
2 (A/C) V(aO) 6,0 13,0 3,2″ 2009 ≈ 700 a G1,5 Vb M 1,1 ≈ 0,4 TRN 4
Cyg 17 Cyg 1 (AB/FG) CPM 5,1 7,8 817,6″ 2010 3 700 000 a F5,5 IV–V + K4 K5 V + K5 V STF 2580 19464+3344 21
2 (A/B) V 5,1 9,3 25,9″ 2020 7900 a F5,5 IV–V K4 STF 2580
2 (F/G) V 8,5 8,6 3,2″ 2020 230 a K5 V K5 V STF 2576
Cyg 44 Cyg V 6,3 10,1 2,2″ 1991 AC 18 20310+3656 1200
Cyg 47 Cyg SI 4,8 7,3 0,3″ 1998 K6: Ib B2,5: WRH 34 20339+3515 1300
Cyg 49 Cyg V 5,8 8,1 2,7″ 2016 G8 IIb B9,9 STF 2716 20410+3218 270
Cyg 52 Cyg V 4,3 9,5 5,9″ 2018 STF 2726 20456+3043 62
Cyg 59 Cyg SI 4,8 7,6 0,1″ 2015 162 a MCA 65 20598+4731 400
Cyg 60 Cyg V 5,4 9,5 2,9″ 2017 STT 426 21012+4609 490
Cyg 61 Cyg V 5,2 6,1 31,8″ 2019 620 a K5 V K7 V 0,7 0,6 STF 2758 21069+3845 3,5 [104] (S, M)
Cyg 75 Cyg V 5,3 10,1 2,7″ 2008 AC 20 21402+4316 130
Cyg 77 Cyg 1 (AB/C) CPM 5,8 7,8 145,5″ 2017 A0 V + A0 V F2 ARY 129 21424+4105 130
2 (A/B) V 6,3 6,7 0,2″ 2014 26,5 a A0 V A0 V KUI 108
2 (Ca/Cb) V 8,1 8,6 0,5″ 2016 F2 BU 688 21424+4103
Cyg HR 7294 V 6,5 6,7 7,2″ 2020 1460 a G3 V G2 V STF 2486 19121+4951 25
Cyg HR 7911 V 6,7 6,8 0,9″ 2018 1150 a STT 410 20396+4035 280
Cyg GJ 1245 1 (AC/B) V 13,5 16,8 6,0″ 2019 220 a M5 + M8,5 M6 V Σ 0,19 GIC 159 19539+4425 4,7 [105] (SA/C), [78] (MA/C)
2 (A/C) SI 14,3 15,0 0,5″ 2016 16,8 a M5 M8,5 0,11 0,08 MCY 3
Del α Del 1 (Aa/Ab) SI 3,9 6,4 0,2″ 2014 16,9 a B9 IV 3,8 ± 0,4 Σ 3,3 ± 0,3 WCK 2 20396+1555 78 [106] (U, M)
2 (Ab1/Ab2) A 6,4 . 30,0 d 1,8 ± 0,2 1,5 ± 0,1
Del β Del V/SB 4,1 5,0 0,2″ 2018 26,7 a F5 III F5 IV 1,8 1,5 BU 151 20375+1436 31 [24] (S), [107] (M)
Del γ Del V 4,4 5,0 8,9″ 2019 3200 a K1 IV F8 V STF 2727 20467+1607 35
Del δ Del SB/A 4,4 . 40,6 d 1,8 1,6 64 [30] (V), [108] (U, M)
Del 1 Del V 6,2 8,0 0,9″ 2016 Be(shell) B BU 63 20303+1054 230 [109] (S)
Del 13 Del V 5,6 8,2 1,5″ 2009 BU 65 20478+0600 140
Dor α Dor V 3,6 4,6 0,2″ 2020 12,1 a A0 IIIp B9 IV B 2092 04340-5503 52 [13] (S)
Dra α Dra (Thuban) SB/A 3,8 5,6 51,4 d A0 III A2: 2,8 ≈ 2,6 alp Dra 14044+6423 93 [110] (V), [111] (S, M)
Dra ε Dra V 4,0 6,9 3,2″ 2017 2800 a G7 IIIb F5 III STF 2603 19482+7016 47
Dra ζ Dra SI 3,2 4,2 0,1″ 1994 6,6 a 5,9 ± 1,2 3,6 ± 0,8 STA 1 17088+6543 100 [112] (M)
Dra η Dra V 2,8 8,2 4,4″ 2015 STT 312 16240+6131 28
Dra μ Dra 1 (AB/C) V 4,9 13,7 12,2″ 2015 F7 V + F7 V + G4 V M3: Σ 3,2 STF 2130 17053+5428 27 [13] (SA), [2] (SBa/Bb, M)
2 (A/B) V 5,7 5,7 2,7″ 2020 420 a F7 V F7 V + G4 V 1,2 Σ 1,8 BU 1088
3 (Ba/Bb) SB 5,7 . 3,2 a F7 V G4 V 1,1 0,9
Dra ν Dra CPM 4,9 4,9 62,1″ 2017 kA3hF0mF0(IV–V) kA4hF2VmF3 STFA 35 17322+5511 30
Dra ο Dra I/SB 4,8 11,0 138,4 d G9 III 1,4 1,0 CIA 8 18512+5923 96 [113] (S, M)
Dra φ Dra 1 (A/B) V 4,5 5,9 0,5″ 2011 310 a B9 IV + F8 IV A3 IV Σ 4,8 ± 0,5 2,7 ± 0,2 STT 353 18208+7120 93 [3] (UAa/Ab), [2] (S, M)
2 (Aa/Ab) SB 4,5 . 26,8 d B9 IV F8 IV 3,4 ± 0,3 1,4 ± 0,2
Dra χ Dra SI/SB 3,7 5,7 0,1″ 2009 281 d F7 V K0 V 1,0 0,7 LAB 5 18211+7244 8,3 [33] (S, M, d)
Dra ψ1 Dra V 4,6 5,6 29,6″ 2019 10 000 a F5 IV–V F8 V STF 2241 17419+7209 21
Dra ω Dra SB/A 4,8 . 5,28 d F5 V 1,5 1,2 ome Dra 17370+6845 24 [88] (S, M)
Dra 17 / 16 Dra 1 (17 = AB / 16 = C) CPM 5,0 5,5 90,2″ 2018 B8 V + A1 V B9,5 V + DA1,6 Σ 4,7 STFA 30 16362+5255 130 [24] (SA/B), [46] (SCa/Cb, MCa/Cb)
2 (A/B) V 5,4 6,4 3,2″ 2020 B8 V A1 V STF 2078
2 (Ca/Cb) SB 5,5 . B9,5 V DA1,6 4,0 0,7
Dra 20 Dra V 7,1 7,3 0,9″ 2018 320 a STF 2118 16564+6502 70
Dra 26 Dra 1 (AB/C) CPM 5,2 10,2 737,9″ 2010 F9 V + K3 V M1 Ve Σ 1,8 LDS 2736 17350+6153 14 [24] (SA/B), [18] (SC, M)
2 (A/B) V/SB 5,3 8,5 0,6″ 2013 76 a F9 V K3 V 1,1 0,7 BU 962
Dra 39 Dra 1 (AB/C) CPM 5,0 8,0 88,9″ 2017 A0 V + F6 V F7 IV STF 2323 18239+5848 56 [3] (UCa/Cb), [24] (SA/B)
2 (A/B) V 5,1 8,1 3,8″ 2019 2500 a A0 V F6 V STF 2323
2 (Ca/Cb) SB 8,0 . 2,71 d F7 IV
Dra 41 / 40 Dra 1 (41 = A / 40 = B) V 5,7 6,0 18,7″ 2019 18 000 a F7 V + F7 V K2 V Σ 2,5 ± 0,3 STF 2308 18002+8000 45 [3] (UBa/Bb), [114] (SAa/Ab, M)
2 (Aa/Ab) SI/SB 6,2 6,7 0,1″ 2012 3,4 a F7 V F7 V 1,3 ± 0,2 1,2 ± 0,2 BAG 6
2 (Ba/Bb) SB 5,6 . 10,5 d K2 V
Dra HR 6983 1 (AB/C) CPM 5,5 8,7 25,7″ 2012 K1 III + G9 III F0 STF 2348 18339+5221 200 [24] (SA/B)
2 (A/B) V 6,2 6,4 0,2″ 2016 210 a K1 III G9 III A 1377
Dra Gliese 687 SI 9,2 . 0,3″ 1993 24,5 a M3 V 0,4 CHR 62 17364+6820 4,5 [115] (M)
Dra Gliese 725 V 9,1 10,0 11,3″ 2019 410 a M3 V M3,5 V 0,3 0,3 STF 2398 18428+5938 3,5 [115] (M)
Equ α Equ I/SB 3,9 . 98,8 d G7 III A4m 2,1 1,0 WRH 35 21158+0515 58 [5] (S, M)
Equ γ Equ V 4,7 8,7 0,6″ 2014 270 a A9 VpSrCrEu K 1,8 0,6 KNT 5 21103+1008 35 [116] (U, SB, M)
Equ δ Equ V/SB 5,2 5,5 0,3″ 2019 5,7 a F7 V F7 V 1,2 1,2 STT 535 21145+1000 18 [33] (S, M, d)
Equ ε Equ 1 (AB/C) V 5,3 7,1 10,6″ 2019 F2 IV + F1 V + F7 IV G0 V Σ 5,1 ± 0,6 STF 2737 20591+0418 54 [3] (UAa/Ab), [24] (SB, SC), [2] (SAa/Ab, M)
2 (A/B) V 6,0 6,3 0,0″ 2020 104 a F2 IV + F1 V F7 IV Σ 3,3 ± 0,4 1,8 STF 2737
3 (Aa/Ab) SB 6,0 . 2,03 d F2 IV F1 V 1,8 1,5
Eri θ Eri V 3,2 4,1 8,2″ 2020 A3 IV–V A1 V PZ 2 02583-4018 49
Eri ρ2 Eri V 5,4 8,9 1,4″ 2002 BU 11 03027-0741 74
Eri τ4 Eri V 3,9 9,5 5,7″ 2013 JC 1 03195-2145 93
Eri f Eri V 4,7 5,3 8,2″ 2020 B9,5 Van A1 Va DUN 16 03486-3737 51
Eri p Eri V 5,8 5,9 11,3″ 2019 490 a K0 V K0 V DUN 5 01398-5612 7,8 [24] (S)
Eri 15 Eri V 6,6 5,3 0,2″ 2018 118 a SEE 23 03184-2231 78
Eri 20 Eri SI 5,5 6,8 0,1″ 2020 21,0 a HDS 456 03363-1728 130
Eri 32 Eri V 4,8 5,9 6,9″ 2019 G8 III A1 V STF 470 03543-0257 96
Eri 39 Eri V 5,0 8,5 6,4″ 2015 STF 516 04144-1015 69
Eri 40 (ο2) Eri 1 (A/BC) CPM 4,4 9,3 82,7″ 2019 K0 V DA2,9 + M4,5 V 0,8 Σ 0,8 STF 518 04153-0739 5,0 [117] (MA), [118] (MB/C)
2 (B/C) V 9,5 11,2 8,2″ 2019 223 a DA2,9 M4,5 V 0,6 0,2 STF 518
Eri 46 Eri V 5,7 9,2 1,3″ 2009 BU 881 04339-0644 270
Eri 53 Eri V 4,0 7,0 1,1″ 2016 77 a KUI 18 04382-1418 36
Eri 55 Eri V 6,7 6,8 9,3″ 2018 F2 VpSrSi G5 III STF 590 04436-0848 650
Eri 62 Eri 1 (AB/C) CPM 5,5 11,4 127,1″ 2011 GMC 11 04564-0510 240
1 (A/B) CPM 5,5 8,9 66,1″ 2013 SHJ 48
2 (Aa/Ab) SI 5,5 9,6 0,4″ 2015 HDS 641
Eri 63 Eri SB/A 5,5 . 2,5 a K0 III–IV D 2,0 0,4 63 Eri 04598-1016 53 [119] (S, M)
For α For V 4,0 7,2 5,4″ 2017 270 a F7 IV G7 V HJ 3555 03121-2859 14 [24] (S)
For η2 For V 6,0 10,0 4,9″ 2015 HJ 3536 02502-3551 120
For κ For 1 (A/B) SI/SB 5,2 10,2 0,6″ 2020 26,5 a G1 V M 1,2 Σ 1,0 LAF 27 02225-2349 23 [120] (UBa/Bb, S, M)
2 (Ba/Bb) SB 10,2 . 3,67 d M M 0,5 0,5
For χ3 For V 6,5 10,1 6,5″ 2015 I 58 03282-3551 100
For ω For V 5,0 7,7 11,0″ 2013 B9 Va A5 V HJ 3506 02338-2814 140
Gem α Gem (Kastor) 1 (AB / C = YY Gem) CPM 1,6 9,8 69,8″ 2017 13 000 a A1 V + M5 V + A4 V + M0 V M1 Ve + M1 Ve 5,9 ± 0,4 Σ 1,2 STF 1110 07346+3153 16 [3] (UAa/Ab, UBa/Bb), [121] (SAa/Ab, SBa/Bb, MAa/Ab, MBa/Bb), [33] (SCa/Cb, MCa/Cb)
2 (A/B) V 1,9 3,0 5,4″ 2020 460 a A1 V + M5 V A4 V + M0 V 3,1 ± 0,2 2,8 ± 0,2 STF 1110
2 (Ca/Cb) E/SB 9,8 . 0,81 d M1 Ve M1 Ve 0,6 0,6 YY Gem
3 (Aa/Ab) SB 1,9 . 9,21 d A1 V M5 V 2,7 0,4
3 (Ba/Bb) SB 3,0 . 2,93 d A4 V M0 V 2,3 0,5
Gem γ Gem (Alhena) SI/SB 1,9 7,5 0,4″ 2012 12,6 a A0 IVm G 2,8 1,1 OCC 9011 06377+1624 34 [122] (S, M)
Gem δ Gem 1 (A/B) V 3,6 8,2 5,5″ 2018 1420 a F1 IV–V K3 V STF 1066 07201+2159 19 [24] (S)
2 (Aa/Ab) SB/A 3,6 . 6,1 a F1 IV–V
Gem η Gem 1 (A/B) V 3,5 6,2 1,7″ 2018 1030 a BU 1008 06149+2230 210 [3] (UAa/Ab)
2 (Aa/Ab) SB 3,5 . 8,2 a
Gem κ Gem V 3,7 10,0 7,2″ 2019 STT 179 07444+2424 43
Gem ν Gem 1 (A/B) SI 4,1 5,1 0,1″ 2020 19,1 a B6 IVe Be Σ 5,2 ± 0,8 1,8 ± 0,4 BTZ 1 06290+2013 170 [106] (U, SB, M)
2 (Aa/Ab) A 4,1 . 54,0 d B6 IVe 2,7 ± 0,4 2,5 ± 0,4
Gem σ Gem I/SB 4,3 11,0 19,6 d K1 III 4,2 ≥ 1,6 CIA 7 07433+2853 38 [111] (S, M)
Gem 1 Gem 1 (A/B) V/SB 4,8 5,5 0,1″ 2008 13,4 a K0 III F6 IV 1,9 Σ 2,7 KUI 23 06041+2316 48 [123] (UBa/Bb, S, M)
2 (Ba/Bb) SB/A 5,5 . 9,60 d F6 IV G2 V 1,7 1,0
Gem 3 Gem V 5,9 8,5 0,6″ 2008 B2,5 Ib 21 BU 1241 06097+2307 2500 [124] (S, M, d)
Gem 4 Gem V 7,5 7,8 0,1″ 2011 610 a BU 1058 06105+2300 640
Gem 38 Gem V 4,8 7,8 7,3″ 2018 1750 a A9 Vp G6 V STF 982 06546+1311 29 [24] (S)
Gem 51 Gem SI 5,7 5,8 0,1″ 1991 HDS 1003 07134+1610 180
Gem 63 Gem 1 (A/B) CPM 5,2 11,0 43,0″ 2006 F1 V + F6 V + F5 V Σ 3,6 SHJ 368 07277+2127 34 [125] (M), [2] (SAa1/Aa2), [60] (SAb, SD)
2 (Aa/Ab) SI 5,3 7,3 0,1″ 2018 2,1 a F1 V + F6 V F5 V Σ 2,6 1,0 MCA 30
3 (Aa1/Aa2) SB/A 5,3 . 1,93 d F1 V F6 V 1,4 1,2
Gem 68 Gem SI 5,4 7,6 0,2″ 2018 170 a MCA 32 07336+1550 130
Gem 82 Gem SI 6,9 7,3 0,3″ 2016 580 a K0 III A0 IV: WRH 15 07486+2308 240
Gem HR 2896 1 (A/B) V 6,1 6,5 0,1″ 2015 210 a K0 III K + M: 1,5 Σ 1,5 STT 175 07351+3058 110 [125] (S, M)
2 (Ba/Bb) A 6,5 . 2,0 a K M: 1,3 0,2
Gru θ Gru 1 (AB/C) CPM 4,3 7,8 158,9″ 2002 JC 20 23069-4331 40
2 (A/B) V 4,5 6,6 1,5″ 2013 JC 20
Gru ι Gru SB/A 3,9 . 1,1 a iot Gru 23104-4515 56
Gru μ1 Gru SI 6,7 5,2 0,2″ 2019 19,3 a G8 III G 2,1 1,6 CHR 187 22156-4121 74 [13] (S), [27] (M)
Gru υ Gru V 5,7 8,2 0,9″ 2009 BU 773 23069-3854 87
Her α Her (Ras Algethi) 1 (α1 = A / α2 = B) V 3,5 5,4 4,7″ 2020 3600 a M5 Ib–II G8 III + A9 IV–V 2,1–3,3 Σ 3,7–5,3 STF 2140 17146+1423 110 [3] (UBa/Bb), [126] (S, M)
2 (Ba/Bb) SB 5,4 . 51,6 d G8 III A9 IV–V 2,1–3,0 1,6–2,3
Her β Her I/SB 2,8 . 1,1 a 2,9 0,9 BLA 4 16302+2129 43 [127] (M)
Her δ Her - (A/B) O 3,1 8,3 13,7″ 2019 A1 Vn G4 IV–V STF 3127 17150+2450 23
1 (Aa/Ab) SI 3,1 4,4 0,1″ 1989 BNU 5 17150+2450 320
Her ζ Her V 3,0 5,4 1,6″ 2019 34,5 a F9 IV G7 V 1,5 1,0 STF 2084 16413+3136 10,7 [24] (S), [128] (M)
Her κ Her V 5,1 6,2 27,0″ 2019 G7 III K0 IV STF 2010 16081+1703 120
Her μ Her 1 (μ1 = A / μ2 = BC) CPM 3,5 9,8 35,5″ 2015 G5 IV + M4 M3 + M4 Σ 1,4 Σ 0,8 STF 2220 17465+2743 8,3 [40] (SB/C), [129] (SAa/Ab, MAa/Ab), [130] (MB/C)
2 (Aa/Ab) V(IR) 3,5 12,7 1,8″ 2015 99 a G5 IV M4 1,1 0,3 TRN 2
2 (B/C) V 10,2 10,7 0,8″ 2015 43 a M3 M4 0,4 0,4 AC 7
Her ν Her SI 4,6 7,5 0,5″ 1996 HDS 2534 17585+3011 260
Her ρ Her 1 (A/B) V 4,5 5,4 4,1″ 2019 A0 III B9,5 IVn STF 2161 17237+3709 120
2 (Aa/Ab) SI 4,9 5,9 0,3″ 2018 A0 III MCA 48
Her σ Her SI 4,2 7,7 0,1″ 2008 7,4 a B7 A9 3,9 1,8 LAB 4 16341+4226 77 [11] (S, M)
Her φ Her I/SB 4,2 . 1,5 a B9:p(HgMn) 3,1 1,6 NOI 2 16088+4456 67 [131] (S, M)
Her c Her V 6,1 6,1 0,1″ 2018 8,1 a A9 III–IV A9 III–IV Σ 3,3 ± 0,4 HU 1176 17080+3556 56 [24] (S), [9] (M)
Her 25 Her SI 5,6 8,3 0,1″ 2007 76 a CHR 55 16254+3724 77
Her 52 Her 1 (A/BC) V 4,8 8,5 2,2″ 2018 870 a A1 VpSiSrCr K–M + K–M 2,2 ± 0,2 Σ 1,2 BU 627 16492+4559 55 [58] (SB/C, MB/C), [132] (MA)
2 (B/C) V(aO) 9,5 9,6 0,3″ 2012 56 a K–M K–M Σ 1,2 A 1866
Her 79 Her SI 5,9 7,3 0,1″ 2008 10,4 a A1 V A8 V Σ 3,1 CHR 63 17375+2419 78 [38] (S, M)
Her 90 Her V 5,3 8,8 1,6″ 2009 BU 130 17533+4000 110
Her 95 Her V 4,9 5,2 6,4″ 2019 A5 IIIn G5 III STF 2264 18015+2136 130
Her 99 Her V 5,1 9,0 1,4″ 2018 56 a F7 V K4 V 0,9 0,5 AC 15 18070+3034 16 [133] (S, M)
Her 100 Her 1 (A/B) V 5,8 5,8 14,3″ 2019 A3 V A3 V STF 2280 18078+2606 63
2 (Aa/Ab) SI 5,9 8,8 0,0″ 2019 36 a A3 V CHR 67
Her 113 Her I/SB 4,8 6,8 246 d G7 II A0 V 3,2 2,2 MKT 9 18547+2239 130 [5] (S, M)
Her 49 Ser V 7,4 7,5 4,0″ 2019 950 a G8 V G8 V STF 2021 16133+1332 24 [24] (S)
Her V772 Her 1 (AB/C) V 7,2 10,6 28,2″ 2015 G1 V + K6 V + G8 V K7 V + M0 V STT 341 18058+2127 33 [3] (UAa/Ab, UCa/Cb), [21] (SAa/Ab, SCa/Cb)
2 (A/B) V/SB 7,4 8,8 0,1″ 2019 20,1 a G1 V + K6 V G8 V STT 341
2 (Ca/Cb) SB 10,6 . 25,8 d K7 V M0 V
3 (Aa/Ab) E/SB 7,4 . 0,88 d G1 V K6 V
Her V819 Her 1 (A/B) SI 6,1 6,4 0,1″ 2017 5,5 a G7 III–IV F2 V + F8 V 1,8 Σ 2,6 MCA 47 17217+3958 71 [21] (UBa/Bb, S), [134] (M)
2 (Ba/Bb) E/SB 6,4 . 2,23 d F2 V F8 V 1,5 1,1
Her HR 6594 V 5,6 9,4 1,4″ 2016 144 a BU 1251 17420+1557 35
Her HR 6627 V 6,0 6,9 0,4″ 2018 1060 a B9 A2 3,0 2,3 STF 2215 17471+1742 140 [11] (S, M)
Her HR 6980 V 6,4 6,6 0,7″ 2019 220 a G9 III G7 III STT 359 18355+2336 140 [24] (S)
Her Furuhjelm 46 V 10,0 10,3 0,3″ 2016 13,0 a M3 M3,5 0,4 0,4 KUI 79 17121+4540 6,0 [40] (S), [112] (M)
Her DQ Her E 14,4 . 0,19 d M3 Ve D 0,4 0,6 500 [30] (V), [135] (U, S2, M)
Hor δ Hor SI 5,2 7,3 0,1″ 2019 HDS 530 04108-4200 55
Hor η Hor SI 5,5 6,5 0,1″ 2020 3,2 a A6 V F0 V TOK 186 02374-5233 42 [136] (S)
Hya β Hya V 4,7 5,5 0,6″ 2015 HJ 4478 11529-3354 95
Hya ε Hya 1 (ABC/D) V 3,4 12,5 18,1″ 2017 G5 III + A8 IV + dF7 STF 1273 08468+0625 40 [3] (UCa/Cb), [13] (S)
2 (AB/C) V 3,5 6,7 2,9″ 2020 370 a G5 III + A8 IV dF7 STF 1273
3 (A/B) V/SB 3,5 5,0 0,2″ 2018 15,1 a G5 III A8 IV SP 1
3 (Ca/Cb) SB 6,7 . 9,90 d dF7
Hya λ Hya SB/A 3,6 . 4,3 a lam Hya 10106-1221 33
Hya χ1 Hya SI 5,7 5,7 0,1″ 2020 7,6 a F4 V F4 V Σ 3,9 ± 0,6 FIN 47 11053-2718 44 [24] (S), [53] (M)
Hya χ2 Hya E/SB 5,7 . 2,27 d B8 V B8 V 3,6 2,6 220 [30] (V), [33] (U, S, M, d)
Hya 15 Hya 1 (A/B) V 5,8 7,4 1,2″ 2017 BU 587 08516-0711 140 [3] (U)
2 (Aa/Ab) SB 5,8 . 2,90 d
Hya 17 Hya V 6,7 6,9 4,0″ 2020 kA4hF1mF2 kA1hF2mF3 STF 1295 08555-0758 88
Hya 19 Hya V 5,6 9,5 1,3″ 2006 KUI 38 09087-0835 320
Hya 23 Hya 1 (A/B) V 5,3 10,8 1,6″ 2019 KUI 40 09167-0621 100 [3] (U)
2 (Aa/Ab) SB/A 5,3 . 2,5 a
Hya 29 Hya 1 (AB/C) V 6,5 11,3 10,9″ 2019 A 1588 09272-0913 230
2 (A/B) V 7,0 7,8 0,4″ 2011 BU 590
Hya 52 Hya 1 (AB/C) V 5,0 10,0 2,4″ 2010 BU 940 14282-2929 120
2 (A/B) SI 5,7 5,7 0,1″ 1989 FIN 306
Hya 54 Hya V 5,1 7,3 8,1″ 2015 F0 VSr G1 V H 3 97 14460-2527 30
Hya 59 Hya V 6,2 6,8 0,5″ 2019 430 a A4 V A6 V BU 239 14587-2739 110 [24] (S)
Hya 17 Crt V 5,6 5,7 9,6″ 2015 F8 V F8 V H 3 96 11323-2916 26
Hya HR 5120 V 5,7 6,6 10,2″ 2015 A7 III–IV F0 Vn H N 69 13368-2630 100
Hyi α Hyi A 2,9 . 1,7 a F0 IV alp Hyi 01588-6134 22
Ind δ Ind SI 4,8 6,0 0,1″ 2020 12,2 a A8 IV G0–7 IV 1,8 ± 0,3 1,3 ± 0,2 FIN 307 21579-5500 58 [16] (S, M)
Ind ε Ind 1 (A/B) CPM 4,8 24,0 403,1″ 2010 K5 V T1 + T6 0,8 Σ 0,12 SOZ 1 22034-5647 3,6 [137] (SA, MA), [138] (SBa/Bb, MBa/Bb)
2 (Ba/Bb) V(aO) 24,1 > 26,6 0,9″ 2005 11,2 a T1 T6 0,07 0,05 VLK 1
Ind θ Ind 1 (A/B) V 4,5 6,9 7,3″ 2015 A5 IV–V + A5 V G0V HJ 5258 21199-5327 30 [136] (UAa/Ab, SAb)
2 (Aa/Ab) I 4,9 5,1 ≈ 1,3 a A5 IV–V A5 V MRN 3
Lac 8 Lac 1 (A/B) O? 5,7 6,3 22,3″ 2018 B1 IVe B1,5 Vs STF 2922 22359+3938 550
2 (Aa/Ab) SI 5,7 . 0,0″ 2018 42 a CHR 112
Leo α Leo (Regulus) 1 (A/BC) CPM 1,4 8,2 179,2″ 2019 B7 V + D K2 V + M4 V Σ 4,0 ± 1,5 Σ ≈ 1,0 STFB 6 10084+1158 24 [139] (UAa/Ab), [140] (MAa/Ab), [141] (S, MB/C)
2 (Aa/Ab) SB 1,4 . 40,1 d B7 V D 3,7 ± 1,4 0,3 ± 0,1
2 (B/C) V 8,2 13,2 2,2″ 2019 K2 V M4 V ≈ 0,8 ≈ 0,2 HDO 127
Leo γ Leo (Algieba) V 2,4 3,6 4,7″ 2020 550 a K1 III G7 IIIb STF 1424 10200+1950 40
Leo η Leo SI 3,5 8,4 0,4″ 2015 WRH 18 10073+1646 390
Leo ι Leo V 4,1 6,7 2,2″ 2019 184 a F1 IV G3 V 1,6–1,7 STF 1536 11239+1032 24 [24] (S), [142] (M)
Leo κ Leo V 4,6 9,7 2,0″ 2015 BU 105 09247+2611 62
Leo ο Leo I/SB 3,5 . 14,5 d F8 IIIm A7m 2,1 1,9 HMM 1 09412+0954 40 [5] (S, M)
Leo χ Leo V 4,7 11,0 4,9″ 2018 KUI 54 11050+0720 29
Leo ω Leo V/SB 5,7 7,3 0,9″ 2019 118 a G1 V 1,9 ± 1,0 0,3 ± 0,9 STF 1356 09285+0903 33 [9] (M)
Leo 19 Leo SI 6,4 6,9 0,1″ 2019 15,2 a MCA 34 09474+1134 85
Leo 49 Leo 1 (A/B) V 5,8 7,9 2,0″ 2019 A2 V B STF 1450 10350+0839 130 [21] (U, S)
2 (Aa/Ab) E/SB 5,8 . 2,45 d
Leo 54 Leo V 4,5 6,3 6,8″ 2019 A1 V A2 Vn STF 1487 10556+2445 88
Leo 55 Leo V 6,0 9,0 1,1″ 2019 139 a BU 1076 10557+0044 46
Leo 65 Leo V 5,7 9,7 2,8″ 2015 BU 599 11069+0157 61
Leo 73 Leo SI/SB 5,5 7,3 0,1″ 2020 8,1 a MCA 35 11159+1318 110
Leo 83 Leo V 6,6 7,5 28,6″ 2019 32 000 a K0 IV K2 IV–V STF 1540 11268+0301 18 [24] (S)
Leo 88 Leo V 6,3 9,1 15,7″ 2020 3500 a F9,5 V K5 STF 1547 11317+1422 24
Leo 90 Leo V 6,3 7,3 3,1″ 2018 B6,6 IV B3,7 V STF 1552 11347+1648 580
Leo 93 Leo 1 (A/B) CPM 4,6 9,0 75,5″ 2020 G7 III + A7 IV G5 Σ 4,2 ± 0,3 STFB 7 11480+2013 71 [143] (SAa/Ab, M)
2 (Aa/Ab) I/SB 5,1 5,6 71,7 d G7 III A7 IV 2,2 ± 0,2 2,0 ± 0,2 MKT 7
Leo HR 4465 V 6,4 6,8 0,7″ 2019 1730 a STF 1555 11363+2747 72
Lep β Lep V 2,9 7,5 2,7″ 2017 BU 320 05282-2046 49
Lep ι Lep V 4,5 9,9 11,9″ 2015 B7,5 Vn G8 Ve STF 655 05123-1152 71
Lep κ Lep V 4,4 6,8 2,2″ 2008 STF 661 05132-1256 220
Lep HR 1771 V 5,4 6,6 3,5″ 2015 G8–K0 II–III A2–3 HJ 3752 05218-2446 110
Lep Gliese 229 V(IR) 8,4 17,1 6,2″ 2011 M1 V T6,5 0,7 0,03–0,04 NAJ 1 06106-2152 5,8 [115] (M1), [144] (M2)
Lib α Lib (Zuben-el-dschenubi) 1 (α2/1 = AB / D = KU Lib) CPM 2,7 7,3 2,6° A4 IV–V + F: + F4 V + M: G8 V (k) Σ ≈ 5,7 ≈ 1,0 CAB 1 14509-1603 23 [145]AB/D, UBa/Bb, S, M), [146] (UAa/Ab)
2 (α2 = A / α1 = B) CPM 2,7 5,2 231,1″ 2012 A4 IV–V + F: F4 V + M: Σ ≈ 3,7 Σ ≈ 2,0 SHJ 186
3 (Aa/Ab) SB 3,3 3,7 70,3 d A4 IV–V F: ≈ 2,2 ≈ 1,5 DSG 17
3 (Ba/Bb) V(aO)/SB 5,2 . 0,2″ 2018 16,1 a F4 V M: ≈ 1,4–1,5 ≈ 0,5–0,6 BEU 19
Lib ι Lib 1 (A/BC) CPM 4,5 10,9 57,8″ 2013 B8 VpSi + B9 IV–V G5 IV Σ 6,1 ± 2,3 H 6 44 15122-1948 120 [13] (S), [53] (M)
2 (Aa/Ab) V/SB 5,1 5,5 0,1″ 2019 23,5 a B8 VpSi B9 IV–V Σ 6,1 ± 2,3 B 2351
2 (B/C) V 10,9 11,4 2,4″ 2015 G5 IV BU 618
Lib μ Lib V 5,6 6,6 1,9″ 2019 610 a BU 106 14493-1409 73
Lib υ Lib V 3,6 10,8 2,0″ 2002 I 1271 15370-2808 69
Lib 5 Lib V 6,5 10,1 4,7″ 2001 HLD 20 14460-1528 170
Lib 18 Lib V 6,0 9,8 19,6″ 2013 STF 1894 14589-1109 110
Lib 47 Lib V 6,0 8,5 0,4″ 2018 360 a HU 1274 15550-1923 240
Lib Gliese 570 1 (AB/D) CPM 5,8 13,9 259,8″ 1998 K4 V + M1,5 V + M3 V T7,5 Σ 1,6 ≈ 0,03 H N 28 14575-2125 6,5 [1] (MBa/Bb, d), [2] (SA, SBa/Bb, MA), [147] (SD, MD)
2 (A/B) V 5,9 8,2 26,2″ 2020 6500 a K4 V M1,5 V + M3 V 0,7 Σ 0,9 H N 28
3 (Ba/Bb) I/SB 8,2 9,8 309 d M1,5 V M3 V 0,5 0,4
LMi β LMi V/SB 4,6 6,0 0,5″ 2018 38,2 a K0 III–IV F8 V HU 879 10279+3642 47 [24] (S)
LMi 11 LMi V 4,8 12,5 6,7″ 2012 240 a G8 Va M5 V HU 1128 09357+3549 11,2
Lup γ Lup 1 (A/B) V 3,0 4,5 0,8″ 2020 190 a B1 V + B2 V B3 V 20 7 HJ 4786 15351-4110 130 [3] (UAa/Ab), [2] (S, M)
2 (Aa/Ab) SB 4,5 . 2,81 d B1 V B2 V 12 8
Lup ε Lup 1 (A/B) V 3,6 5,0 0,1″ 2019 740 a COP 2 15227-4441 160 [3] (UAa/Ab)
2 (Aa/Ab) SB 3,6 . 4,56 d
Lup ζ Lup CPM 3,5 6,7 71,7″ 2020 G8 III F6 V DUN 176 15123-5206 36
Lup η Lup V 3,4 7,5 14,8″ 2020 RMK 21 16001-3824 140
Lup κ Lup V 3,8 5,5 26,3″ 2020 B9,5 Vne A3–5 V DUN 177 15119-4844 54
Lup λ Lup V 4,4 5,2 0,1″ 2019 71 a B3 V B3 V 8,1 5,8 SEE 219 15088-4517 170 [24] (S), [68] (M, d)
Lup μ Lup 1 (AB/C) V 4,2 6,3 23,1″ 2019 B7 V + B7 V A2–3 V DUN 180 15185-4753 100
2 (A/B) V 4,9 5,0 0,7″ 2019 770 a B7 V B7 V HJ 4753
Lup ξ Lup V 5,1 5,6 10,2″ 2020 A3 V B9 V PZ 4 15569-3358 65
Lup ο Lup SI 5,3 4,8 0,0″ 2020 33 a FIN 319 14516-4335 120
Lup π Lup V 4,6 4,6 1,6″ 2019 B5 IV B5 V HJ 4728 15051-4703 150
Lup τ2 Lup V 4,9 5,6 0,1″ 2020 26,0 a F4 IV A7: I 402 14262-4523 98 [13] (S)
Lup υ Lup V 5,4 10,9 1,6″ 2015 RST 1839 15248-3943 120
Lup d Lup V 4,7 6,5 2,1″ 2016 HJ 4788 15359-4457 130
Lyn 4 Lyn V 6,1 7,7 0,6″ 2016 500 a STF 881 06221+5922 150
Lyn 12 Lyn 1 (AB/C) V 5,4 7,1 8,9″ 2019 A1,5 V + A2 V kA6hF1mF1 STF 948 06462+5927 66
2 (A/B) V 5,4 6,0 1,9″ 2019 730 a A1,5 V A2 V STF 948
Lyn 14 Lyn V 6,0 6,5 0,3″ 2015 320 a STF 963 06531+5927 150
Lyn 15 Lyn V 4,5 5,5 0,7″ 2017 260 a STT 159 06573+5825 55
Lyn 19 Lyn 1 (AB/D) CPM 5,4 7,6 215,3″ 2002 B8 V + B9 V A0 V STF 1062 07229+5517 210
2 (A/B) V 5,8 6,7 13,8″ 2019 B8 V B9 V STF 1062
Lyn 20 Lyn V 7,5 7,7 14,9″ 2017 A8 V A6 V STF 1065 07223+5009 160
Lyn 38 Lyn 1 (A/B) V 3,9 6,1 2,6″ 2019 2800 a A1 V A4 V STF 1334 09188+3648 38
2 (Ba/Bb) SI 6,1 . 0,2″ 2004 CHR 173
Lyn 10 UMa V/SB 4,2 6,5 0,4″ 2017 21,8 a F3 V K0 V 1,4 0,9 KUI 37 09006+4147 16 [148] (S, M)
Lyn HR 2486 V 6,3 6,3 4,5″ 2019 2000 a F6 V F4 V STF 958 06482+5542 43
Lyr β Lyr 1 (A/B) CPM 3,4 6,7 45,7″ 2017 B6–8 II + B B7 V Σ 16 STFA 39 18501+3322 310 [149] (SAa1/Aa2, M, d)
2 (Aa1/Aa2) E/I/SB 3,6 4,0 12,9 d B6–8 II B 13 3 CIA 3
Lyr ε Lyr 1 (ε1 = AB / ε2 = CD) CPM 4,7 4,6 209,5″ 2016 ≈ 340 000 a A3 V + F0 V A6 Vn + A7 Vn Σ 3,9 Σ 3,6 STFA 37 18443+3940 50 [150] (UAB/CD, M)
2 (A/B) V 5,2 6,1 2,2″ 2020 2800 a A3 V F0 V 2,3 1,6 STF 2382
2 (C/D) V 5,3 5,4 2,4″ 2020 720 a A6 Vn A7 Vn 1,9 1,7 STF 2383
Lyr ζ Lyr 1 (ζ1 = A / ζ2 = D) CPM 4,3 5,6 43,7″ 2018 kA5hF0VmF3 F1 Vnn STFA 38 18448+3736 48 [3] (U)
2 (Aa/Ab) SB 4,3 . 4,3 d
Lyr η Lyr 1 (A/B) O? 4,4 8,6 28,4″ 2017 B2,5 IV A0 IVn STF 2487 19138+3909 430 [3] (U)
2 (Aa/Ab) SB 4,4 . 56,4 d B2,5 IV
Lyr ι Lyr SI 5,3 6,4 0,1″ 2014 220 a STA 3 19073+3606 280
Lyr HR 7162 V 5,3 8,0 1,3″ 2015 63 a F9 V K1 V 1,1 0,7 BU 648 18570+3254 15 [36] (M)
Lyr GJ 758 V(aO) 4,8 . 1,6″ 2017 96 a G8 V T7 1,0 0,04–0,05 THA 1 19236+3313 16 [151] (S, M)
Lyr 17 Lyr 1 (A/B) V 5,3 9,1 3,2″ 2017 > 1200 a F0 V G: ≈ 1,8 ≈ 0,8 STF 2461 19074+3230 44 [152] (UA/B, S, M), [3] (UAa/Ab)
2 (Aa/Ab) SB 5,3 . 42,9 d F0 V
Mic α Mic O? 5,0 10,1 20,2″ 2010 HJ 5224 20500-3347 120
Mic θ2 Mic V 6,2 6,9 0,3″ 2019 460 a BU 766 21244-4100 120
Mon β Mon 1 (β1/2 = AB / C) V 4,0 5,4 9,9″ 2019 B4 Ve(shell) + B2 Vn(e) B3 V:nne STF 919 06288-0702 210
1 (β1 = A / β2 = B) V 4,6 5,0 7,1″ 2019 B4 Ve(shell) B2 Vn(e) STF 919
Mon ε Mon V 4,4 6,6 12,2″ 2019 A7 IV F4 V STF 900 06238+0436 41
Mon 3 Mon V 5,0 8,0 1,9″ 1996 BU 16 06018-1036 220
Mon 14 Mon V 6,5 10,6 11,0″ 2012 STF 938 06348+0734 200
Mon 15 Mon 1 (A/B) O? 4,6 7,8 3,0″ 2018 O7 V((f))z B2 Σ 45 ± 4 STF 950 06410+0954 720 [153] (U, S, M, d)
2 (Aa/Ab) SI/SB 4,7 5,9 0,1″ 2018 108 a O7 V((f))z Σ 45 ± 4 CHR 168
Mon Ross 614 V 11,0 14,8 1,3″ 2020 16,6 a M4 V M5,5 V 0,2 0,11 B 2601 06293-0248 4,1 [154] (S), [155] (M)
Mon WISE 0720−0846 (Scholz’ Stern) V(aO) 18,3 . 0,4″ 2019 8,1 a M9,5 T5,5 0,09 0,06 BUG 17 07200-0847 6,8 [156] (V)[157] (U, S, M, d)
Mus β Mus V 3,5 4,0 1,0″ 2019 460 a B2 V B3 V R 207 12463-6806 100 [24] (S)
Mus δ Mus SB/A 3,6 . 1,2 a del Mus 13023-7133 28
Mus η Mus 1 (AB/C) CPM 4,8 7,2 58,2″ 2015 B7 III B7 III DUN 131 13152-6754 120 [3] (U)
2 (A/B) V(IR) 4,8 . 2,5″ 2015 B7 III HUB 11
3 (Aa/Ab) SB 4,8 . 20,0 d B7 III
Mus θ Mus 1 (A/B) V 5,7 7,6 5,5″ 2016 WC5–6 + O6–7 V + O9,5–B0 Iab O9 III RMK 16 13081-6518 2300 [158] (SAa1/Aa2, UAa1/Aa2, d)
2 (Aa/Ab) SI 5,9 6,6 0,0″ 2016 WC5–6 + O6–7 V O9,5–B0 Iab CHR 247
3 (Aa1/Aa2) SB 5,9 . 19,1 d WC5–6 O6–7 V
Mus λ Mus A 3,6 . 1,2 a lam Mus 11456-6644 39
Mus 12 G. Mus 1 (A/B) V 5,5 6,6 0,2″ 2018 97 a K4 III + dF–G A0 V + A2 V B 1705 11395-6524 150 [21] (UAa/Ab, UBa/Bb, S)
2 (Aa/Ab) SB 5,5 . 61 d K4 III dF–G
2 (Ba/Bb) E/SB 6,6 . 2,75 d A0 V A2 V
Mus HR 4401 V 5,4 6,6 2,5″ 2016 B5 IV B9,5 IV HJ 4432 11234-6457 120
Nor ε Nor 1 (A/B) V 4,5 6,1 22,9″ 2016 B3 V + B3 V A HJ 4853 16272-4733 160 [159] (U, SAa/Ab)
2 (Aa/Ab) SB 4,5 . 3,26 d B3 V B3 V
Nor ι1 Nor 1 (AB/C) V 4,6 8,0 11,0″ 2019 A5 V + A6 V HJ 4825 16035-5747 39 [13] (S)
2 (A/B) V 5,2 5,8 0,2″ 2020 26,8 a A5 V A6 V SEE 258
Nor λ Nor V 5,8 6,9 0,4″ 2018 68 a A4 A7 SEE 271 16193-4240 110 [13] (S)
Oct ι Oct V 5,9 6,9 0,7″ 2019 RST 2819 12550-8507 110
Oct λ Oct V 5,6 7,3 3,5″ 2008 HJ 5278 21509-8243 130
Oct μ2 Oct V 6,5 7,1 16,6″ 2015 DUN 232 20417-7521 40
Oct ν Oct SB 3,7 . 2,8 a BLM 6 21415-7723 19
Oph α Oph (Ras Alhague) SI 2,1 5,0 0,7″ 2018 8,6 a A5 IV K5–7 V 2,4 0,9 MCY 4 17349+1234 15 [160] (S, M)
Oph η Oph V 3,1 3,3 0,5″ 2019 88 a A1 IV A1 IV 3,0 3,5 BU 1118 17104-1544 27 [60] (S), [161] (M)
Oph λ Oph 1 (AB/C) CPM 3,8 11,8 119,6″ 2013 A0 V + A4 V Σ 4,8 STF 2055 16309+0159 53 [24] (S), [11] (M)
2 (A/B) V 4,2 5,2 1,4″ 2019 129 a A0 V A4 V 2,7 2,1 STF 2055
Oph ξ Oph V 4,4 8,9 4,1″ 2015 420 a F3 V K3: DON 832 17210-2107 17
Oph ο Oph V 5,2 6,6 10,8″ 2019 G8 III F6 IV–V H 3 25 17180-2417 86
Oph ρ Oph V 5,1 5,7 3,0″ 2017 4200 a B2 IV B2 V H 2 19 16256-2327 110
Oph τ Oph 1 (A/B) V 5,3 5,9 1,5″ 2019 260 a F2 V F5 V STF 2262 18031-0811 51 [3] (UAa/Ab), [13] (S)
2 (Aa/Ab) SB 5,3 . 184 d F2 V
Oph υ Oph 1 (A/B) V 4,7 8,8 1,0″ 2019 76 a A3m Σ 5,0 ± 0,8 RST 3949 16278-0822 41 [3] (UAa/Ab), [58] (S, M)
2 (Aa/Ab) SB 4,7 . 27,2 d A3m
Oph 19 Oph O 6,1 9,7 23,9″ 2019 STF 2096 16472+0204 220
Oph 21 Oph V 5,8 7,3 0,8″ 2019 990 a STT 315 16514+0113 120
Oph 24 Oph V 6,3 6,3 1,0″ 2015 1100 a BU 1117 16568-2309 120
Oph 36 Oph 1 (AB/C) CPM 4,4 6,5 731,6″ 2000 K0 V + K1 V K5 V Σ 1,6 SHJ 243 17153-2636 5,9 [162] (S, M)
2 (A/B) V 5,1 5,1 5,1″ 2017 470 a K0 V K1 V 0,8 0,8 SHJ 243
Oph 41 Oph V 4,9 7,5 0,7″ 2019 141 a A 2984 17166-0027 62
Oph 47 Oph I/SB 4,9 5,8 26,3 d 1,5 1,2 MKT 14 17266-0505 31 [163] (S, M, d)
Oph 61 Oph V 6,1 6,5 20,8″ 2019 A0 IV A0 IV STF 2202 17446+0235 97
Oph 68 Oph V 4,5 7,5 0,4″ 2018 210 a BU 1125 18018+0118 90
Oph 70 Oph V/SB 4,2 6,2 6,4″ 2019 88 a K0 V K5 V 0,9 0,7 STF 2272 18055+0230 5,1 [49] (S, M)
Oph 73 Oph V 6,0 7,5 0,8″ 2019 290 a A8 F6 1,7 1,2 STF 2281 18096+0400 55 [11] (S, M)
Oph HR 6367 V 6,3 7,8 0,7″ 2018 200 a A1 V F3 V A 1145 17082-0105 81 [24] (S)
Oph HR 6516 V 6,1 6,2 0,4″ 2019 46,4 a G9 IV–V G9 IV–V 1,0 0,9 STF 2173 17304-0104 16 [1] (S, M, d)
Oph V1054 Oph 1 (ABC/F) CPM 9,0 16,9 230,7″ 2005 M3,5 Ve + M + M + M3,5 V M7 Ve Σ 1,2 0,08 WNO 55 16555-0820 6,2 [164] (UBa/Bb, SBa/Bb, M)
2 (AB/C) CPM 9,4 11,8 72,2″ 2014 M3,5 Ve + M + M M3,5 V Σ 1,0 0,2 LDS 573
3 (A/B) V/SB 9,7 9,8 0,2″ 2019 1,7 a M3,5 Ve M + M 0,4 Σ 0,6 KUI 75
4 (Ba/Bb) SB 9,8 . 2,97 d M M 0,3 0,3
Oph RS Oph SB 10,8 . 1,2 a M0–2 III D 0,7–0,8 1,2–1,4 2400 [30] (V), [165] (U, S, M)
Ori β Ori (Rigel) 1 (A/BC) V 0,3 6,8 10,3″ 2020 B8 Iae B9 + B9 STF 668 05145-0812 260 [3] (U)
2 (B/C) V 7,5 7,6 0,1″ 2005 B9 B9 BU 555
3 (Ba/Bb) SB 7,5 . 9,86 d B9
Ori δ Ori (Mintaka) 1 (Aa/Ab) V 2,4 3,8 0,3″ 2019 350 a O9,5 II + B0 V B0 IV Σ 32,3 22,5 HEI 42 05320-0018 380 [5] (UAa1/Aa2, SAa1/Aa2, MAa1/Aa2), [166] (SAb, MAb, d)
2 (Aa1/Aa2) E/SB 2,5 5,6 5,73 d O9,5 II B0 V 23,2 9,1
Ori ζ Ori (Alnitak) 1 (A/B) V 1,9 3,7 2,4″ 2017 1510 a O9,5 Ib + B0,5 IV B0 III Σ 47 ± 13 STF 774 05407-0157 390 [167] (S, M, d)
2 (Aa/Ab) I/SB 2,0 4,0 7,4 a O9,5 Ib B0,5 IV 33 ± 10 14 ± 3 NOI 1
Ori η Ori 1 (A/B) V 3,6 4,9 1,9″ 2020 B1 V + B3 V + B2 V B2: DA 5 05245-0224 300 [3] (UAa1/Aa2), [21] (SAa/Ab, SAa1/Ab2)
2 (Aa/Ab) SI/SB 3,8 5,3 0,0″ 2019 9,4 a B1 V + B3 V B2 V MCA 18
3 (Aa1/Aa2) E/SB 3,8 . 7,98 d B1 V B3 V
Ori θ1 Ori A 1 (Aa/Ab) SI 6,6 9,8 0,2″ 2018 ≈ 210 a B0,5 Σ ≈ 18,5 4 PTR 1 05353-0523 410 [168] (U, S, M), [169] (d)
2 (Aa1/Aa2) E 6,6 . 65,1 d B0,5 ≈ 16 ≈ 2,5
Ori θ1 Ori B 1 (Ba,Bc,Be/
Bb,Bd)
SI 7,5 8,5 0,9″ 2012 ≈ 1920–
11 000 a
B1 V + A + B: Σ ≈ 15 Σ 7 SMN 5 05353-0523 410 [168] (U, S, M), [169] (d)
1? (Ba,Be/Bc) SI 7,5 10,5 0,6″ 2012 2000 a B1 V + A + B: Σ ≈ 14 ≈ 1 SMN 5
2? (Bb/Bd) SI > 10 > 10,8 0,1″ 2012 ≈ 200 a 4 3 PTR 1
3? (Ba/Be) I 7,5 > 7,3 B1 V + A B: Σ ≈ 9 4–6 GVT 1
4? (Ba1/Ba2) E 7,5 . 6,47 d B1 V A ≈ 7 ≈ 2
Ori θ1 Ori C 1 (Ca/Cb) I/SB 5,3 6,7 11,4 a O6 Vp B0 V Σ 33 ± 5 11 ± 5 WGT 1 05353-0523 410 [170] (SCa/Cb, MCa/Cb), [168] (UCa1/Ca2, MCa1/Ca2), [169] (d)
2 (Ca1/Ca2) SB 5,3 . 61,5 d O6 Vp 31 1
Ori θ1 Ori D I/SB 6,4 > 6,9 53,0 d B1,5 V B 16 6 GVT 1 05353-0523 410 [168] (U, S, M), [169] (d)
Ori ι Ori 1 (A/B) V 2,8 7,7 12,5″ 2018 O9 III + B1 III–IV + B2: IV: B2 V Σ > 36 STF 752 05354-0555 410 [171] (U, SAa1/Aa2, MAa1/Aa2), [81] (SAa/Ab, SB, d)
2 (Aa/Ab) SI 3,0 6,3 0,1″ 2016 O9 III + B1 III–IV B2: IV: Σ 36 CHR 250
3 (Aa1/Aa2) SB 3,0 . 29,1 d O9 III B1 III–IV 23 13
Ori λ Ori V 3,5 5,5 4,3″ 2019 O8 IIIf B0,5 V STF 738 05351+0956 340
Ori μ Ori 1 (A/B) V 4,3 6,3 0,0″ 2020 18,6 a A5 V + G5 V F5 V: + F5 V: Σ 3,0 Σ 2,7 A 2715 06024+0939 46 [33][134] (S, M, d)
2 (Aa/Ab) SB/A 4,4 . 4,45 d A5 V G5 V 2,4 0,7
2 (Ba/Bb) SB/A 6,3 . 4,78 d F5 V: F5 V: 1,4 1,4
Ori ρ Ori 1 (A/B) V 4,6 8,5 6,4″ 2018 STF 654 05133+0252 110
2 (Aa/Ab) SB/A 4,5 . 2,8 a
Ori σ Ori 1 (A/B) V 4,1 5,3 0,3″ 2015 160 a O9 V B0,5 V Σ 30 11,5 ± 1,5 BU 1032 05387-0236 390 [24] (S), [172] (UAa/Ab, M)
2 (Aa/Ab) I/SB 4,1 . 143 d O9 V 17 12,8 NOI 6
Ori χ1 Ori SI/SB 4,5 7,5 0,0″ 2019 14,1 a G0 V 1,0 0,15 KNG 1 05544+2017 8,7 [173] (S, M)
Ori 14 Ori V 5,7 6,6 1,0″ 2020 198 a Am Am 1,8 1,5 STT 98 05079+0830 62 [13] (S), [107] (M)
Ori 23 Ori V 5,0 6,8 32,0″ 2019 B2 IV–V B8–9 STF 696 05228+0333 370
Ori 32 Ori V 4,5 5,8 1,3″ 2017 610 a B5 IV B7 V 4,4 3,3 STF 728 05308+0557 93 [24] (S), [11] (M)
Ori 33 Ori V 5,7 6,7 1,8″ 2017 STF 729 05312+0318 350
Ori 42 Ori 1 (A/B) V 4,6 7,5 1,2″ 2020 B1 V DA 4 05354-0450 400 [174] (S, d)
2 (Aa/Ab) SI 4,9 6,3 0,2″ 2020
Ori 52 Ori V 6,0 6,0 1,0″ 2019 1260 a A5 V F0 STF 795 05480+0627 140 [13] (S)
Ori 64 Ori 1 (A/B) SI/SB 5,1 6,1 0,1″ 2019 13,2 a B7–8 IV–V + B7–8 IV–V B5–6 IV–V Σ 8,2 ± 0,7 3,8 ± 0,3 MCA 24 06035+1941 270 [3] (UAa/Ab), [175] (S, M)
2 (Aa/Ab) SB 5,1 . 14,6 d B7–8 IV–V B7–8 IV–V 4,3 ± 0,4 3,9 ± 0,3
Ori 75 Ori SI 6,1 6,1 0,1″ 2018 9,2 a FIN 331 06171+0957 78
Ori V1031 Ori 1 (A/B) SI 6,3 7,8 0,2″ 2019 31 a A8 III–IV + A5 IV–V A6 IV–V Σ 4,8 ≈ 2,2 MCA 22 05474-1032 460 [21] (UAa/Ab, S), [176] (M)
2 (Aa/Ab) E/SB 6,3 . 3,41 d A8 III–IV A5 IV–V 2,5 2,3
Ori HR 2174 V 5,7 6,7 29,1″ 2019 B9 V A2 IV STF 855 06090+0230 180
Pav ξ Pav 1 (A/B) V 4,5 8,1 3,7″ 2016 GLE 2 18232-6130 140
2 (Aa/Ab) SB/A 4,5 . 6,1 a
Pav HR 7278 V 6,1 6,4 0,5″ 2019 157 a A5 V A8 V GLE 3 19172-6640 92 [13] (S)
Pav SCR 1845-6357 V(aO) 17,4 . 1,2″ 2006 M8,5 T6 0,04–0,05 BIL 1 18451-6358 3,9 [30] (V), [177] (S, M, d)
Peg η Peg (Matar) SI/SB 4,1 6,9 0,1″ 2005 2,2 a G2 II–III A5 V 3,2 ± 0,4 2,0 ± 0,2 BLA 11 22430+3013 73 [178] (S, M)
Peg ι Peg I/SB 3,5 5,7 10,2 d F5 V G8 V 1,3 0,8 PTI 1 22070+2521 11,5 [33] (S, M)
Peg κ Peg 1 (A/B) V/SB 4,9 5,0 0,2″ 2011 11,6 a F5 IV F5 IV + G–K 1,5 Σ 2,5 BU 989 21446+2539 34 [179] (S, M)
2 (Ba/Bb) SB/A 5,0 . 5,97 d F5 IV G–K 1,7 0,8
Peg ψ Peg SI 4,7 . 0,1″ 1995 55 a MCA 76 23578+2508 150
Peg 1 Peg 1 (A/B) CPM 4,2 9,3 36,6″ 2020 17 500 a K1 III K0 V STFB 11 21221+1948 48 [3] (UBa/Bb)
2 (Ba/Bb) SB 9,3 . 3,0 a K0 V
Peg 3 Peg CPM 6,2 7,5 38,7″ 2020 A2 V F0 V STFA 56 21377+0637 88
Peg 13 Peg V 5,7 6,9 0,2″ 2014 26,3 a F2 III–IV 2,7 ± 0,3 COU 14 21501+1717 33 [9] (M)
Peg 33 Peg V 6,3 9,2 1,0″ 2017 410 a F7 IV STF 2900 22237+2051 33
Peg 34 Peg 1 (A/B) V 5,8 12,5 4,1″ 2015 420 a F7 V K4 BU 290 22266+0424 40 [13] (S)
2 (Aa/Ab) SB/A 5,8 . 2,4 a F7 V
Peg 37 Peg 1 (A/B) V 5,8 7,3 0,2″ 2020 124 a F4 IV F7 IV 1,7 Σ 2,3 STF 2912 22300+0426 53 [24] (S), [180] (U, M)
2 (Ba/Bb) SI/SB 7,8 8,2 0,0″ 2020 2,1 a F4 IV 1,2 1,1 STF 2912
Peg 52 Peg V 6,1 7,3 0,5″ 2016 250 a A8 V F6 V STT 483 22592+1144 94 [24] (S)
Peg 57 Peg - (A/B) O? 5,2 10,1 32,6″ 2015 M4S III + A6 V Σ ≈ 4,9 STF 2982 23095+0841 240 [181] (U, SAb, M)
1 (Aa/Ab) SI/SB 5,2 8,2 0,2″ 2014 100–500 a M4S III A6 V ≈ 3 ≈ 1,9 YSC 16 23095+0841 240
Peg 64 Peg V 5,4 7,8 0,4″ 2002 BU 718 23219+3149 170
Peg 72 Peg V 5,7 6,1 0,6″ 2018 490 a K3 III K5 III ≈ 2 ≈ 2 BU 720 23340+3120 170 [24] (S), [36] (M)
Peg 78 Peg V 5,1 8,1 0,8″ 2016 640 a AGC 14 23440+2922 69
Peg 85 Peg V 5,8 8,9 0,4″ 2015 26,3 a G3 V K6 V 0,9 0,7 BU 733 00022+2705 13 [49] (S, M)
Peg IK Peg SB 6,1 14,4 21,7 d A8 V DA1,5 1,5 1,2 47 [46] (V, U, S, M)
Peg EQ Peg V 10,5 12,4 5,4″ 2017 230 a M4 M5 WIR 1 23317+1956 6,2
Per β Per (Algol) 1 (Aa/Ab) SI/SB 2,1 4,6 0,1″ 2010 1,9 a B8 V + K2 IV Am Σ 3,9 1,8 LAB 2 03082+4057 28 [182] (S, M)
2 (Aa1/Aa2) E/I/SB 2,1 . 2,87 d B8 V K2 IV 3,2 0,7 CSI 1
Per γ Per E/SI/SB 3,6 3,8 0,1″ 2007 14,6 a G8 IIIa A2 IV 2,5 1,4 WRH 29 03048+5330 75 [5] (S, M)
Per ε Per 1 (A/B) V 2,9 8,9 8,8″ 2020 B1,5 III A2 V Σ ≈ 15 STF 471 03579+4001 200 [183] (U, M)
2 (Aa/Ab) SB 2,9 . 14,1 d B1,5 III 13,5 ± 2,0 0,9–1,8
Per ζ Per 1 (A/E) CPM 2,9 10,0 120,0″ 2012 B1 Ib + B9 V A2V STF 464 03541+3153 230
2 (A/B) V 2,9 9,2 12,8″ 2020 B1 Ib B9 V STF 464
Per η Per (Miram) CPM 3,8 8,5 28,7″ 2018 K3 Ib–IIa B9 V STF 307 02507+5554 270
Per θ Per V 4,2 10,0 21,2″ 2020 2700 a F7 V M1 V STF 296 02442+4914 11,1 [24] (S)
Per ο Per 1 (A/B) V 3,9 6,7 1,1″ 2015 B1 III + B2 V Σ 24 BU 535 03443+3217 340 [184] (U, S), [185] (M)
2 (Aa/Ab) SB 3,9 . 4,42 d B1 III B2 V 14 10
Per τ Per E/SI/SB 4,2 5,9 4,1 a G8 IIIa A6 V 2,1 1,8 LAB 1 02543+5246 64 [5] (S, M)
Per φ Per SI/SB 4,1 7,8 0,0″ 2013 127 d Be sdO CIA 6 01437+5041 220 [60] (S)
Per 12 Per SI/SB 5,5 5,9 0,0″ 2016 331 d F8 V G1,5 V 1,4 1,2 MCA 8 02422+4012 24 [33] (S, M, d)
Per 20 Per 1 (AB/C) V 5,4 9,7 14,0″ 2014 F3 IV–V + F6 IV–V Σ 3,9 ± 0,6 STF 318 02537+3820 71 [24] (S), [9] (M)
2 (A/B) V 5,8 6,8 0,2″ 2008 31,6 a F3 IV–V F6 IV–V Σ 3,9 ± 0,6 BU 524
Per 34 Per V 4,7 7,3 0,6″ 2016 BU 1179 03294+4931 170
Per 56 Per 1 (A/B) V 5,8 9,3 4,2″ 2017 1890 a F4 V + DA3,1 F2 Σ 2,4 STT 81 04246+3358 41 [46] (UAa/Ab, SAa/Ab, M)
2 (Aa/Ab) V(HST) 5,8 15,0 0,4″ 1999 47 a F4 V DA3,1 1,5 0,9 BAS 5
2 (Ba/Bb) V(HST) 9,6 11,3 0,6″ 2002 F2 BAS 5
Per 57 Per O 6,1 6,8 121,4″ 2013 F0 V F0 SHJ 44 04334+4304 61
Per 58 Per SB/A 4,3 . 28,8 a K0 II–III B9 V 58 Per 04367+4116 240
Per HR 890 V 5,2 6,2 12,0″ 2019 B7 V B9 V STF 331 03009+5221 140
Phe α Phe SB/A 2,4 . 10,5 a alp Phe 00262-4217 26
Phe β Phe V 4,1 4,2 0,6″ 2018 171 a SLR 1 01061-4643 50 [186] (d)
Phe γ Phe SB/A 3,4 . 194 d gam Phe 01284-4319 72
Phe ζ Phe 1 (AB/C) V 4,0 8,2 6,8″ 2016 B6 V + B8 V + A7 V F1 V Σ 8,1 RMK 2 01084-5515 92 [21] (UAa/Ab, SB, MB), [33] (SAa/Ab, MAa/Ab)
2 (A/B) V 4,0 6,8 0,6″ 2020 290 a B6 V A7 V Σ 6,4 1,7 RST 1205
3 (Aa/Ab) E/SB 4,0 . 1,67 d B6 V B8 V 3,9 2,5
Phe η Phe 1 (A/B) V 4,4 11,5 20,1″ 1999 A0 IV + G:–K: HJ 3391 00434-5728 76 [136] (U, S, M)
2 (Aa/Ab) I/A 4,4 8,5 ≈ 10 a A0 IV G:–K: 2,8 MRN 1
Phe ξ Phe V 5,7 10,0 13,1″ 2015 HJ 3387 00418-5630 68
Phe υ Phe V 5,5 6,9 0,3″ 2020 28,4 a A2 IV A4 IV Σ 3,2 ± 0,4 RST 3352 01078-4129 62 [13] (S), [58] (M)
Pic α Pic A 3,3 . 4,2 a alp Pic 06482-6156 30
Pic θ Pic 1 (AB/C) CPM 6,2 6,7 38,3″ 2008 A0 V A2 V DUN 20 05248-5219 160
2 (A/B) V 6,8 7,4 0,3″ 2019 123 a A0 V I 345
Pic ι Pic V 5,6 6,2 12,8″ 2009 DUN 18 04509-5328 40
Pic μ Pic V 5,6 9,3 2,5″ 2019 B9I Vn A8 V:p HJ 3874 06320-5845 190
PsA α PsA (Fomalhaut) 1 (AB/C) CPM 1,2 12,6 5,7° A3 Va + K4e M4 V Σ 2,6 0,2 MAM 1 22577-2937 7,7 [187]AB/C, ρA/B, S, M)
2 (A / B = TW PsA) CPM 1,2 6,6 2,0° A3 Va K4e 1,9 0,7 SHY 106
PsA β PsA V 4,3 7,1 30,4″ 2015 A1 Va G1 V PZ 7 22315-3221 44
PsA γ PsA V 4,5 8,2 4,0″ 2010 A0 VpSrCrEu F5 V HJ 5367 22525-3253 62
PsA δ PsA V 4,3 9,2 4,9″ 2015 HWE 91 22559-3232 53
PsA η PsA V 5,7 6,8 1,9″ 2017 B8(shell) III B8,5 IV BU 276 22008-2827 250
PsA θ PsA SI 5,8 5,8 0,1″ 2020 20,0 a A1 V A1 V 2,3 ± 0,4 2,3 ± 0,4 FIN 330 21477-3054 90 [16] (S, M, d)
Psc α Psc (Alrescha) V 4,1 5,2 1,9″ 2019 1950 a kA0hA7Sr kA2hF2mF2 STF 202 02020+0246 46
Psc ζ Psc 1 (A/BC) V 5,2 6,3 23,1″ 2020 A7 IV F7 V + G7 V STF 100 01137+0735 40 [3] (U, SBa/Bb)
2 (B/C) V 6,3 12,2 2,0″ 2015 F7 V + G7 V BU 1029
3 (Ba/Bb) SB 6,3 . 9,08 d F7 V G7 V
Psc η Psc V 3,8 7,5 0,6″ 2008 850 a BU 506 01315+1521 110
Psc ψ1 Psc 1 (A/B) V 5,3 5,5 29,9″ 2020 A0 IV–Vnn B9 IVn STF 88 01057+2128 84
2 (Aa/Ab) SI 5,7 6,6 0,1″ 2017 14,4 a A0 IV–Vnn YR 6
Psc 24 Psc SI 6,7 6,7 0,1″ 2020 22,8 a G9 III A0 V Σ 2,9 ± 0,8 FIN 359 23529-0309 170 [20] (S, M)
Psc 27 Psc V 4,9 8,9 0,7″ 2018 930 a BU 730 23587-0333 72
Psc 33 Psc SB/A 4,6 . 72,9 d 1,7 ± 0,4 0,8 ± 0,2 33 Psc 00053-0542 39 [188] (M)
Psc 34 Psc V 5,5 9,4 7,6″ 2015 B9 Vn G5 Ve STF 5 00100+1109 93
Psc 35 Psc 1 (A/B) V 6,1 7,5 11,2″ 2019 F1 IV–V + F1 IV–V A7 STF 12 00150+0849 75 [3] (U, SAa/Ab)
2 (Aa/Ab) E/SB 6,1 . 0,84 d F1 IV–V F1 IV–V
Psc 51 Psc SI 5,8 8,0 0,2″ 2020 27,5 a MCA 1 00324+0657 89
Psc 55 Psc V 5,6 8,5 6,6″ 2015 K2 IIIa F3 V STF 46 00399+2126 130
Psc 64 Psc SB 5,7 6,0 13,8 d F8 V F8 V 1,2 1,2 64 Psc 00490+1656 23 [18] (V), [33] (S, M, d)
Psc 65 Psc V 6,3 6,3 4,4″ 2020 F5 III F4 III STF 61 00499+2743 89
Psc 66 Psc V 6,1 7,2 0,6″ 2018 340 a A0 V A4 V STT 20 00546+1911 77 [24] (S)
Psc 77 Psc 1 (A/B) V 6,4 7,3 33,2″ 2020 F5 V F5–7 V STF 90 01058+0455 45
Psc 103 Psc V 7,0 9,2 0,6″ 2008 BU 5 01393+1638 180
Pup π Pup 1 (A/B) CPM 2,9 7,9 66,5″ 2009 K4 III + B5 B9–A0 V DUN 43 07171-3706 250
2 (Aa/Ab) 2,9 6,5 0,7″ 1991 K4 III B5 HDS 1008
Pup σ Pup 1 (A/B) V 3,3 8,8 22,1″ 2015 K5 III + A: G5 V Σ ≈ 7 DUN 51 07292-4318 59 [189] (S, M)
2 (Aa/Ab) SB/A 3,3 . 258 d K5 III A: ≈ 5 ≈ 2 sig Pup
Pup d2 Pup V 5,8 8,6 1,2″ 1996 I 160 07397-3808 180
Pup f Pup SI 4,8 6,1 0,1″ 2020 81 a FIN 324 07374-3458 110
Pup G Pup V 5,9 8,1 1,0″ 1999 I 156 06257-4811 180
Pup k Pup (HR 2949 / 2948) O 4,4 4,6 9,9″ 2016 B5 IV B6 V H 3 27 07388-2648 120
Pup n Pup V 5,8 5,9 9,9″ 2015 F5 V F6 V H N 19 07343-2328 32
Pup t Pup SI 5,1 7,6 0,0″ 2020 52 a HDS 970 06584-3407 170
Pup 2 Pup 1 (A/B) V 6,0 6,7 16,7″ 2019 A2 V A8 V + A8 V ≈ 2 Σ 3,2 STF 1138 07455-1441 86 [21] (U, S), [190] (M)
2 (Ba/Bb) E/SB 6,7 . 1,66 d A8 V A8 V 1,6 1,6
Pup 5 Pup V 5,7 7,3 1,0″ 2020 570 a F5 G3 STF 1146 07479-1212 29 [13] (S)
Pup 9 Pup V/SB 5,6 6,5 0,4″ 2019 23,3 a F9 V G4 V 1,2 0,9 BU 101 07518-1354 17 [13] (S), [68] (M)
Pup 171 G. Pup 1 (A/B) CPM 5,3 14,7 871,1″ 2010 F9 V DC10 RAG 6 07456-3410 15
2 (Aa/Ab) SI 5,3 9,0 0,8″ 2020 23,1 a F9 V TOK 193
Pup 188 G. Pup SI 5,6 6,8 0,0″ 2020 2,4 a G1,5 IIIFe A: Σ ≈ 5,9 TOK 194 07490-2455 110 [191] (SB, M)
Pup HR 2668 1 (AB/C) CPM 5,3 8,8 185,0″ 2015 K0,5 V + G1,5 V K6 V DUN 38 07040-4337 17
2 (A/B) V 5,6 6,7 21,2″ 2015 K0,5 V G1,5 V DUN 38
2 (Ca/Cb) SI/SB 8,8 13,0 0,2″ 2020 4,6 a K6 V TOK 390
Pup HR 3143 CPM 6,2 6,2 16,3″ 2010 B2–3 B2–3 DUN 59 07592-4959 430
Pyx ε Pyx 1 (A/BC) V 5,6 9,5 17,6″ 2015 H N 96 09099-3022 65
2 (B/C) V 10,5 10,8 0,2″ 2020 B 1113
Pyx XY Pyx 1 (Aa/Ab) SI 6,1 7,0 0,1″ 2018 66 a B2 V FIN 314 08280-3507 620 [60] (UAa1/Aa2)
2 (Aa1/Aa2) E 6,1 . 0,92 d B2 V
Pyx HR 3367 V 5,8 6,7 0,4″ 2019 260 a I 489 08315-1935 110
Pyx HR 3430 V 5,4 6,8 0,7″ 2018 123 a G3 V K0 V BU 208 08391-2240 19 [24] (S)
Ret β Ret SI/SB 4,0 6,8 0,1″ 2019 5,2 a TOK 191 03442-6448 31
Ret ε Ret V 4,4 12,5 13,0″ 2015 K2 IV DA3,3 JSP 56 04165-5918 18 [46] (S)
Ret ζ Ret CPM 5,3 5,6 309,1″ 2015 G2,5 V G1 V 1,0 1,0 ALB 1 03182-6230 12 [192] (M)
Ret θ Ret V 6,0 7,7 4,1″ 2015 26 000 a B9 IV kA2hA5VmA7 RMK 3 04177-6315 140
Scl ε Scl V 5,4 8,5 5,0″ 2017 2200 a F0 V G9 V HJ 3461 01456-2503 28 [24] (S)
Scl κ1 Scl V 6,1 6,2 1,3″ 2017 580 a F4 III F3 III BU 391 00094-2759 77 [13] (S)
Scl λ1 Scl V 6,6 7,0 0,7″ 2017 HDO 182 00427-3828 150
Scl τ Scl V 6,0 7,4 0,8″ 2020 680 a 1,9 1,4 HJ 3447 01361-2954 54 [11] (M)
Sco α Sco (Antares) V 1,0 5,4 2,8″ 2019 2700 a M0,5 Iab B3 V: 12 7 GNT 1 16294-2626 170 [193] (M1), [194] (M2)
Sco β Sco (Akrab) 1 (β1 = AB / β2 = CE) V 2,6 4,5 13,4″ 2019 B1 V B2 V + B8pMn Σ 33 H 3 7 16054-1948 140 [195] (UEa/Eb, SEa), [196] (MAa/Ab, MC, MEa, SAa/Ab), [197] (MB)
2 (A/B) V 2,6 10,6 0,3″ 2019 640 a B1 V Σ 25 8 BU 947
2 (C/E) SI 4,5 6,6 0,1″ 2019 19 a B2 V B8pMn 8 MCA 42
3 (Aa/Ab) SB 2,9 4,1 6,83 d B0,5 IV–V B1,5 V 15 10 OCC 1958
3 (Ea/Eb) SB 6,6 . 11,1 d B8pMn 3,5
Sco δ Sco SI/SB 2,4 4,6 0,2″ 2019 10,8 a B0,3 IV 13 8,2 LAB 3 16003-2237 150 [198] (S, M)
Sco λ Sco 1 (A/B) I/SB 2,1 2,7 2,9 a B1,5 IV B2 IV Σ 12,2 ± 1,5 8,1 ± 1,0 TNG 1 17336-3706 110 [199] (UAa/Ab, S, M, d)
2 (Aa/Ab) SB 2,1 . 6 d B1,5 IV 10,4 ± 1,3 1,8 ± 0,2
Sco θ Sco V 2,0 5,4 6,5″ 1991 SEE 510 17373-4300 92
Sco ν Sco 1 (AB/CD) CPM 4,0 6,1 41,3″ 2019 B2 V B8 V + B9 VpSi Σ 23 Σ 8,4 H 5 6 16120-1928 150 [3] (UAa/Ab), [13] (SC/D), [200] (M)
2 (A/B) V 4,4 5,3 1,3″ 2019 B2 V Σ 17 6 BU 120
2 (C/D) V 6,6 7,2 2,4″ 2019 B8 V B9 VpSi 3 Σ 5,4 MTL 2
3 (Aa,Ab/Ac) SI 4,5 6,8 0,1″ 2019 B2 V Σ 11 6 CHR 146
4 (Aa/Ab) SB 4,5 . 5,6 d B2 V 10 ≈ 1
Sco ξ Sco 1 (ABC/DE) CPM 4,1 7,4 282,0″ ≈ 300 000 a F5 IV + F5 IV + G1 V G8 V + K0 V Σ 4,0 Σ 1,9 23 [24] (SA/B), [201]ABC/DE, UABC/DE, UAB/C, UD/E, SC, SD/E, M)
2 (AB/C) V 4,2 7,3 7,2″ 2019 1510 a F5 IV + F5 IV G1 V Σ 3,0 1,0 STF 1998 16044-1122
2 (D/E) V 7,4 8,0 11,9″ 2019 ≈ 4500 a G8 V K0 V 1,0 0,9 STF 1999 16044-1127
3 (A/B) V 4,8 4,9 1,2″ 2020 45,9 a F5 IV F5 IV 1,5 1,5 STF 1998 16044-1122
Sco π Sco E/SB 2,9 . 1,57 d B1 V B2: V: 15589-2607 180 [3] (U)
Sco ρ Sco SB 3,9 . 4,00 d B2 IV–V 15569-2913 140 [3] (U, S)
Sco σ Sco 1 (A/B) CPM 2,9 8,4 20,5″ 2019 B1 III + B1 V + B7 V B9,5 V H 4 121 16212-2536 210 [202] (S, M)
2 (Aa/Ab) SI 3,1 5,2 0,4″ 2019 B1 III + B1 V B7 V Σ 22,2  +1,6−2,6 BLM 4
3 (Aa1/Aa2) I/SB 3,3 4,1 33,0 d B1 III B1 V 13,5  +0,5−1,4 8,7  +0,6−1,2 NOR 1
Sco 2 Sco V 4,7 7,0 2,0″ 2019 BU 36 15536-2520 150
Sco 11 Sco V 5,8 9,8 3,3″ 2015 BU 39 16076-1245 120
Sco 12 Sco V 5,8 8,1 3,8″ 2016 B9 V F3 V HJ 4839 16123-2825 93
Sco HR 6077 V 5,6 6,9 23,6″ 2018 F5 IV F9 V BSO 12 16195-3054 44
Sco Gliese 667 1 (AB/C) V 6,0 10,3 32,7″ 2019 K3 V + K5 V M1,5 V HJ 4935 17190-3459 6,8
2 (A/B) V 6,4 7,4 0,7″ 2019 42,2 a K3 V K5 V MLO 4
Sct β Sct I/SB 4,3 8,1 2,3 a G4 IIa B9 V 4,6 2,6 NOI 5 18472-0445 220 [203] (V), [204] (S, M)
Ser β Ser V 3,7 10,0 29,4″ 2019 A2 IV K3 V STF 1970 15462+1525 48
Ser δ Ser V 4,2 5,2 4,0″ 2020 1150 a F0 IV F0 IV STF 1954 15348+1032 70
Ser θ Ser V 4,6 4,9 22,4″ 2019 A5 V A5 Vn STF 2417 18562+0412 40
Ser ι Ser V 5,4 5,2 0,2″ 2012 21,9 a B9 V A1 V 2,0 ± 0,4 2,0 ± 0,4 HU 580 15416+1940 58 [112] (S, M)
Ser μ Ser SI 3,8 5,4 0,4″ 2018 71 a CHR 259 15496-0326 52
Ser ψ Ser 1 (A/B) V 6,0 12,0 4,6″ 2013 730 a G3 V M3 + M3 A 2230 15440+0231 15 [60] (S)
2 (Ba/Bb) V(aO) 12,7 12,8 0,1″ 2020 M3 M3 RDR 6
Ser 36 Ser SI 5,2 7,8 0,4″ 2018 65 a A7 G0 Σ 3,1 ± 0,5 CHR 51 15513-0305 50 [20] (S, M)
Ser 59 Ser V 5,4 7,6 3,9″ 2018 A0 Vs G: III STF 2316 18272+0012 140
Ser HR 7048 („Tweedledum and Tweedledee“) 1 (A/B) V 6,3 6,7 2,6″ 2019 A1 V + A A2 V + A Σ 10–12 STF 2375 18455+0530 190 [205] (SAb, SBb, M)
2 (Aa/Ab) SI 6,9 7,3 0,0″ 2020 28 a A1 V A Σ 5–6 FIN 332
2 (Ba/Bb) SI 7,5 7,5 0,1″ 2020 40 a A2 V A Σ 5–6 FIN 332
Sex γ Sex V 5,4 6,4 0,5″ 2019 78 a A1 V A4 V AC 5 09525-0806 85 [24] (S)
Sex 35 Sex V 6,2 7,1 6,8″ 2019 K2 II–III K1 II–III STF 1466 10433+0445 170
Sex 40 Sex V 7,1 7,8 2,4″ 2017 STF 1476 10493-0401 86
Sge δ Sge SI/SB 4,3 5,0 0,1″ 1991 10,1 a M2 IIab B9,5 V 3,9 3,5 BLA 6 19474+1832 130 [5] (S, M)
Sge ζ Sge 1 (AB/C) V 5,0 9,0 8,3″ 2016 A1 V + A3 V F5 Σ 4,7 ± 1,2 STF 2585 19490+1909 78 [206] (S), [9] (M)
2 (A/B) V 5,6 6,0 0,2″ 2007 23,2 a A1 V A3 V Σ 4,7 ± 1,2 AGC 11
Sge θ Sge - (AB/C) O 6,4 7,5 91,3″ 2017 F3 V + G5 V K2 III STF 2637 20099+2055 45
1 (A/B) V 6,6 8,9 11,7″ 2019 F3 V G5 V STF 2637 20099+2055 260
Sgr β1 Sgr O? 4,0 7,2 28,4″ 2010 B9 V F0 V DUN 226 19226-4428 80
Sgr ζ Sgr V 3,3 3,5 0,3″ 2020 21,0 a A2 III A4 IV Σ 5,3 ± 0,4 HDO 150 19026-2953 27 [13] (S), [58] (M)
Sgr η Sgr V 3,3 8,0 3,5″ 2016 BU 760 18176-3646 45
Sgr κ2 Sgr V 5,7 7,3 0,4″ 2017 700 a BU 763 20239-4225 96
Sgr τ Sgr A 3,3 . 69,3 d tau Sgr 19069-2740 36
Sgr υ Sgr SB/A 4,6 . 138 d B8p F2pe ups Sgr 19217-1557 550 [3] (S)
Sgr χ1 Sgr SI 5,8 5,8 0,1″ 2020 5,7 a A8 A6–F0 FIN 327 19253-2431 77 [13] (S)
Sgr ψ Sgr 1 (A/B) V 5,5 5,7 0,1″ 2019 20,0 a K2 III A9 III + A3 V 3,1 ± 0,6 Σ 4,4 ± 0,7 B 430 19155-2515 91 [3] (UBa/Bb), [2] (S, M)
2 (Ba/Bb) SB 5,7 . 10,8 d A9 III A3 V 2,4 ± 0,1 2,0 ± 0,6
Sgr 17 Sgr SI 7,2 8,9 0,1″ 2020 119 a MCA 51 18166-2033 210
Sgr 21 Sgr V 5,0 7,4 1,7″ 2008 JC 6 18254-2033 140
Sgr 52 Sgr V 4,7 9,2 2,4″ 1999 BU 654 19367-2453 58
Sgr W Sgr 1 (Aa/Ab) SI 4,7 . 0,2″ 2002 ≈ 173 a G0 Ib–II + F5 A0 V Σ ≈ 7 ≈ 2,2 BLM 5 18050-2935 850 [19][207] (U, SAa1/Aa2, SAb, M)
2 (Aa1/Aa2) SB/A 4,7 . 4,3 a G0 Ib–II F5 ≈ 5,8 ≤ 1,4 W Sgr
Sgr Gliese 783 V 5,3 11,5 4,3″ 2013 K2,5 V M3,5 HJ 5173 20112-3606 6,0
Sgr WR 104 1 (WR,OB/B) V(HST) 13,6 15,4 1,0″ 1998 ≈ 47 a WC9 + B0,5 V O8–5 V Σ 30 2600 [208] (V, ρ, Ep.), [209] (U, S, M, d)
2 (WR/OB) 13,6 . 242 d WC9 B0,5 V 10 20
Tau δ3 Tau V 4,3 7,9 1,8″ 2010 KUI 17 04255+1756 46
Tau θ Tau 1 (θ2 = A / θ1 = B) CPM 3,4 3,8 347,9″ 2016 K0 IIIb A7 III 5,1 Σ 4,2 ± 1,1 STFA 10 04287+1552 48 [210] (SAa/Ab, MAa/Ab), [211] (SBa/Bb, MBa/Bb, d)
2 (Aa/Ab) I/SB 3,7 4,9 141 d A7 III 2,9 2,2 MKT 13
2 (Ba/Bb) SI/SB 3,8 7,3 0,2″ 2020 16,3 a K0 IIIb 2,9 ± 0,9 1,3 ± 0,2 MCA 15
Tau κ Tau CPM 4,2 5,3 339,4″ 2016 A7 IV–V F0 Vn STF 541 04254+2218 47
Tau ξ Tau 1 (A/B) SI 3,7 7,6 0,6″ 2020 51 a B9 V + B9 V + B5 V F5 V Σ 8,3 0,9 HDS 433 03272+0944 61 [212] (S, M)
2 (Aa/Ab) I/SB 4,8 4,3 145 d B9 V + B9 V B5 V Σ 4,4 3,9 MKT 15
3 (Aa1/Aa2) E/SB 4,8 . 7,15 d B9 V B9 V 2,3 2,1
Tau σ Tau CPM 4,7 5,1 444,0″ 2014 STFA 11 04393+1555 48
Tau τ Tau 1 (A/B) CPM 4,2 7,0 62,5″ 2017 B3 V A2 S 455 04422+2257 93
2 (Aa/Ab) SI 4,3 7,0 0,3″ 2007 58 a B3 V MCA 16
Tau χ Tau 1 (A/B) V 5,4 8,5 19,4″ 2016 B9 V F8 + G6 + K4: + K4: 2,6 Σ 3,6 STF 528 04226+2538 91 [213] (U, S, M)
2 (Ba,Bb/Bc) SB 8,5 . 9,4 a F8 + G6 K4: + K4: Σ 2,2 Σ 1,4
3 (Ba/Bb) SB 8,5 . 17,6 d F8 G6 1,2 1,0
Tau 7 Tau 1 (AB/C) V 5,9 9,9 22,4″ 2014 A3 V + A3 V Σ 4,7 STF 412 03344+2428 130 [13] (S), [11] (M)
2 (A/B) V 6,6 6,8 0,8″ 2019 520 a A3 V A3 V 2,4 2,3 STF 412
Tau 19 Tau (Taygeta) SB/A 4,6 6,1 2,0 a B6 IV OCC 235 03453+2428 130
Tau 27 Tau (Atlas) I/SB 3,8 5,5 291 d B8 III 4,7 3,4 MKT 12 03492+2403 130 [214] (M, d)
Tau 28 Tau (Pleione) SI/SB 5,1 . 0,2″ 1991 218 d B8 Vne 2,9 < 0,4 CHR 125 03492+2408 130 [215] (U, M)
Tau 30 Tau V 5,1 9,8 9,2″ 2015 B3 V F3 Vn STF 452 03483+1109 130
Tau 31 Tau V 6,3 6,6 0,8″ 2019 870 a KUI 15 03520+0632 220
Tau 36 Tau SI/SB 5,5 5,5 0,0″ 2014 7,9 a K1 II B7,5 IV: MCA 13 04044+2406 340
Tau 46 Tau V/SB 5,7 6,7 0,1″ 2020 7,2 a F3 V F3 V 1,4 ± 0,3 0,8 ± 0,2 A 1938 04136+0743 40 [24] (S), [9] (M)
Tau 47 Tau V 5,1 7,3 1,3″ 2016 480 a G5 III A7 V: BU 547 04139+0916 100
Tau 51 Tau SI/SB 5,6 8,1 0,2″ 2005 11,4 a A8 V G0 V 1,9 ± 0,2 1,6 ± 0,2 MCA 14 04184+2135 57 [1] (S, M, d)
Tau 55 Tau V 7,3 8,6 0,6″ 2018 90 a F7 V G6 V STT 79 04199+1631 47 [24] (S)
Tau 62 Tau CPM 6,4 7,9 29,1″ 2019 B A0 V STF 534 04240+2418 220
Tau 66 Tau V 5,8 5,9 0,3″ 2018 55 a A0 A1 Σ ≈ 5 HU 304 04239+0928 120 [12] (S, M)
Tau 70 Tau SI/SB 7,0 7,7 0,1″ 2018 6,3 a F7 V F 1,4 1,3 FIN 342 04256+1556 47 [216] (S, M, d)
Tau 80 Tau V 5,7 8,1 1,4″ 2018 173 a A8 V G2 V STF 554 04301+1538 46 [24] (S)
Tau 88 Tau 1 (A/B) CPM 4,3 7,8 69,2″ 2017 A6m + F5 + G2–3 + G2–3 F8 V + M: Σ 5,6 Σ > 1,4 SHJ 45 04357+1010 53 [217] (UAa1/Aa2, UAb1/Ab2, SAa1/Aa2, SAb1/Ab2, MAa1/Aa2, MAb1/Ab2), [218] (UBa/Bb, SBa/Bb, MBa/Bb)
2 (Aa/Ab) SI 4,4 6,6 0,2″ 2019 18,0 a A6m + F5 G2–3 + G2–3 Σ 3,5 Σ 2,1 CHR 18
2 (Ba/Bb) SB 7,8 . 3,7 a F8 V M: 1,2 > 0,15
3 (Aa1/Aa2) SB/A 4,4 . 3,57 d A6m F5 2,1 1,4
3 (Ab1/Ab2) SB/A 6,6 . 7,89 d G2–3 G2–3 1,1 1,0
Tau 104 Tau V 5,8 5,8 0,1″ 1988 1,2 a G4 V G4 V 1,0 1,0 A 3010 05074+1839 16 [24] (S), [11] (M)
Tau 108 Tau V 6,3 12,5 1,9″ 2004 COU 158 05155+2217 160
Tau 115 Tau 1 (A/BC) V 5,4 10,6 10,1″ 2016 STT 107 05272+1758 200
2 (B/C) V 11,1 11,8 7,0″ 2015 STT 107
3 (Aa/Ab) SI 5,8 6,8 0,1″ 2020 15,9 a MCA 19
Tau 118 Tau 1 (A/B) V 5,8 6,7 4,6″ 2020 B8,5 V A0 Vn STF 716 05293+2509 130
2 (Aa/Ab) V(aO) 5,8 12,1 1,8″ 2003 RBR 1
2 (Ba/Bb) V(aO) 6,7 10,1 1,0″ 2003 RBR 1
Tau 126 Tau V 5,0 6,6 0,2″ 2011 111 a B8 B7 Σ ≈ 9 BU 1007 05413+1632 190 [12] (S, M)
Tau 131 Tau SI 6,2 6,9 0,2″ 2016 CHR 160 05472+1429 100
Tau V711 Tau 1 (A/B) V 6,0 8,9 6,7″ 2016 1210 a F8 V + G5 V K4 V + K8 V Σ 2,0 Σ 1,3 STF 422 03368+0035 30 [3] (UAa/Ab, UBa/Bb), [2] (S, M)
2 (Aa/Ab) SB 6,0 . 2,84 d F8 V G5 V 1,1 0,9
2 (Ba/Bb) SB 8,9 . 3,2 a K4 V K8 V 0,7 0,6
Tau HR 1188 V 5,7 6,5 0,4″ 2017 61 a A2 V A5 V Σ 4,2 ± 0,4 STT 65 03503+2535 56 [13] (S), [58] (M)
Tau HR 1902 V 6,5 6,6 1,1″ 2019 770 a B8 IV B8 IV Σ 3,4 STF 749 05371+2655 150 [24] (S), [219] (M)
Tau HR 1997 V 6,3 7,6 0,1″ 2018 230 a B9 Vn 2,7 2,0 STT 118 05484+2052 200 [90] (S, M)
Tel HR 7549 V 5,8 6,4 23,0″ 2015 A1–3 V G8–K0 III DUN 227 19526-5458 130
Tri β Tri I/SB 3,6 4,0 31,4 d A5 III 3,5 ± 0,3 1,4 ± 0,1 MKT 4 02095+3459 41 [1] (S, M, d)
Tri δ Tri I/SB 5,0 6,9 10,0 d G0,5 VFe K: 1,0 0,7 MKT 5 02171+3413 11,0 [18] (M)
Tri ε Tri V 5,4 11,4 4,2″ 1990 STF 201 02030+3317 110
Tri ι Tri 1 (A/B) V 5,3 6,7 4,0″ 2019 5200 a G0 III + G5 III F5 V STF 227 02124+3018 89 [3] (UAa/Ab, UBa/Bb)
2 (Aa/Ab) SB 5,3 . 14,7 d G0 III G5 III
2 (Ba/Bb) SB 6,7 . 2,24 d F5 V
Tuc α Tuc SB/A 2,9 . 11,5 a alp Tuc 22185-6016 61
Tuc β Tuc 1 (β1/2 = ABCD / β3 = E) CPM 3,6 5,1 548,9″ 2000 B9,5 Va + A3 IV + A7 V A0 V SHY 114 00315-6257 41
2 (β1 = AB / β2 = CD) V 4,3 4,5 27,2″ 2017 B9,5 Va A3 IV + A7 V LCL 119
2 (Ea/Eb) V 5,8 6,0 0,1″ 1964 A0 V B 8
3 (A/B) V 4,4 13,5 2,6″ 1932 B9,5 Va B 7
3 (C/D) V 4,6 6,5 0,4″ 2017 44,7 a A3 IV A7 V I 260
Tuc κ Tuc 1 (AB/CD) CPM 4,8 7,2 319,2″ 2010 ≈ 300 000 a F6 IV + G5 V K2 V + K3 V Σ 2,4 Σ 1,7 HJ 3423 01158-6853 21 [201] (UAB/CD, UAa/Ab, S, M)
2 (A/B) V 4,9 7,5 4,6″ 2017 1200 a F6 IV G5 V Σ 1,5 0,9 HJ 3423
2 (C/D) V 7,8 8,3 1,0″ 2018 85 a K2 V K3 V 0,9 0,8 I 27
3 (Aa/Ab) A 4,9 . 22? a F6 IV 1,3 0,2?
Tuc λ1 Tuc V 6,7 7,4 20,4″ 2015 580 000 a F7 IV–V G0–2 V DUN 2 00524-6930 61
UMa α UMa (Dubhe) 1 (AB/C) CPM 1,8 7,2 370,0″ 2015 K1 II–III + F0 V F7 V Σ ≈ 6 BU 1077 11037+6145 38 [24] (SA/B), [220] (M), [221] (UCa/Cb)
2 (A/B) V/SB 2,0 5,0 0,8″ 2017 44 a K1 II–III F0 V 4,3 ± 0,3 ≈ 1,6 BU 1077
2 (Ca/Cb) SB 7,2 . 6,04 d F7 V
UMa γ UMa (Phecda) A 2,4 . 20,5 a A0 Ve K2 V 2,9 0,8 gam UMa 11538+5342 26 [148] (S, M)
UMa ζ UMa / 80 UMa (Mizar/Alkor) 1 (ζ1/2 = AB / 80 = C) CPM 2,0 4,0 707,7″ 2017 A2 V + A2 V + kA1h(eA)mA7 IV–V A5 Vn + M2 V Σ ≈ 7,2 Σ 2,1 STF 1744 13239+5456 25 [33] (SAa/Ab, MAa/Ab, d), [18] (MBa/Bb), [3] (UBa/Bb), [222] (UCa/Cb, SCa/Cb, MCa/Cb)
2 (ζ1 = A / ζ2 = B) V 2,3 3,9 14,6″ 2019 A2 V + A2 V kA1h(eA)mA7 IV–V Σ 4,9 Σ ≈ 2,3 STF 1744
2 (Ca/Cb) V(IR) 4,0 > 8 1,0″ 2009 ≈ 100 a A5 Vn M2 V 1,8 0,3 PSF 1
3 (Aa/Ab) I/SB 3,0 3,0 20,5 d A2 V A2 V 2,5 2,4 PEA 1
3 (Ba/Bb) SB 3,9 . 176 d kA1h(eA)mA7 IV–V 1,8 ≈ 0,2–0,7
UMa ι UMa 1 (A/BC) V 3,1 9,2 2,4″ 2017 490 a F0 IV–V + D: M3 V + M4 V Σ 2,7 ± 0,4 Σ 0,7 HJ 2477 08592+4803 15 [223] (UAa/Ab, S, M)
2 (Aa/Ab) SB 3,1 . 12,2 a F0 IV–V D: 1,7 ± 0,1 1,0 ± 0,3
2 (B/C) V 9,9 10,1 0,9″ 2017 39 a M3 V M4 V 0,4 0,3 HU 628
UMa κ UMa V 4,2 4,5 0,3″ 2019 35,6 a A0 IV–V A0 V Σ 6,3 ± 1,0 A 1585 09036+4709 110 [24] (S), [9] (M)
UMa μ UMa SB/A 3,1 . 230 d M0 III 2,2 ≈ 1,6 mu UMa 10223+4130 71 [224] (S, M)
UMa ν UMa V 3,6 10,1 7,0″ 2020 STF 1524 11185+3306 120
UMa ξ UMa 1 (A/B) V 4,3 4,8 2,1″ 2019 59,9 a F8,5: V + M: G2 V + M: Σ 1,4 Σ 1,0 STF 1523 11182+3132 8,8 [3] (UAa/Ab, UBa/Bb), [18] (SAb, SBb, M)
2 (Aa/Ab) SB 4,3 . 1,8 a F8,5: V M: 1,0 0,4
2 (Ba/Bb) SB 4,8 . 3,98 d G2 V M: 0,9 0,1
UMa σ2 UMa V 4,9 8,9 4,3″ 2016 920 a F6 IV–V K2 V 1,3 ≈ 0,7 STF 1306 09104+6708 20 [24] (S), [18] (M)
UMa φ UMa V 5,3 5,4 0,4″ 2019 105 a A3 IV A3 IV STT 208 09521+5404 160 [24] (S)
UMa 16 UMa SB/A 5,2 8,9 16,2 d G0 V M: 1,1 0,6 16 UMa 09143+6125 20 [18] (S2, M)
UMa 55 UMa 1 (A/B) SI 4,8 5,3 0,1″ 2007 5,1 a A1 V + A2 V A1 V Σ 3,8 2,1 CHR 133 11191+3811 60 [225] (UAa/Ab, S, M)
2 (Aa/Ab) SB 4,8 . 2,55 d A1 V A2 V 2,0 1,8
UMa 62 UMa SI/SB 5,7 6,7 0,0″ 2015 268 d F5 1,3 1,2 BNU 3 11416+3145 41 [226] (M)
UMa 65 UMa 1 (ABC/D) CPM 6,5 7,0 62,5″ 2018 A3 V + A3 V + A8–9 A1p + F STF 1579 11551+4629 87 [21] (UAa/Ab, SAa/Ab, SB), [60] (SDa/Db)
2 (AB/C) V 6,7 8,3 3,9″ 2019 A3 V + A3 V + A8–9 STF 1579
2 (Da/Db) SI 7,1 9,2 0,1″ 2018 A1p F BAG 46
3 (A/B) V 6,5 9,2 0,3″ 2019 118 a A3 V + A3 V A8–9 A 1777
4 (Aa/Ab) E/SB 6,5 . 1,73 d A3 V A3 V
UMa 78 UMa V 5,0 7,9 0,7″ 2019 105 a F1 V G6 V BU 1082 13007+5622 25 [24] (S)
UMa HR 4098 V 6,4 12,6 4,0″ 2015 81 a KUI 50 10281+4847 23
UMa HR 4439 V 5,7 7,6 0,9″ 2017 73 a F4 V G3 V 1,3 0,9 STT 235 11323+6105 29 [24] (S), [11] (M)
UMa HR 4486 V 6,5 8,2 8,9″ 2019 1580 a G0 V K2 V STF 1561 11387+4507 23
UMa W UMa 1 (A/B) V 8,0 12,4 6,4″ 2019 F8 V + F8 V Σ 1,7 ES 1825 09438+5557 52 [3] (U, S), [227] (M)
2 (Aa/Ab) E/SB 7,9 . 0,33 d F8 V F8 V 1,1 0,6
UMa Gliese 338 V 7,8 7,9 16,9″ 2019 980 a K7 V M0 V STF 1321 09144+5241 6,3
UMa Gliese 412 CPM 8,8 14,6 32,0″ 2017 M1 Ve M6 V VBS 18 11055+4332 4,8
UMa Winnecke 4 (M 40) O 9,7 10,2 53,2″ 2017 G0 F8 WNC 4 12222+5805 320
UMi α UMi (Polarstern) 1 (A/B) V 2,0 9,1 18,4″ 2016 F8 Ib + A5 F3 V Σ 5,1 ± 1,3 ≈ 1,4 STF 93 02318+8916 130 [3] (SAa/Ab), [228] (M)
2 (Aa/Ab) SI/SB 2,3 4,3 0,1″ 2014 29,6 a F8 Ib A5 3,5 ± 0,8 1,6 ± 0,5 WRH 39
UMi π2 UMi V 7,3 8,2 0,7″ 2013 172 a STF 1989 15396+7959 120
Vel γ Vel 1 (γ2 = A / γ1 = B) CPM 1,8 4,1 41,2″ 2017 WC8 + O7,5 III–V B2 III Σ 37,5 ± 1,7 DUN 65 08095-4720 340 [229] (U, M, d)
2 (γ2 Vel A/B) SB 1,8 . 78,5 d WC8 O7,5 III–V 9,0 ± 0,6 28,5 ± 1,1
Vel δ Vel 1 (A/B) V 2,0 5,6 0,8″ 2019 147 a A2 IV + A4 V F8 V Σ 4,7 1,4 I 10 08447-5443 25 [230] (M, d)
2 (Aa/Ab) E/I/SB 2,0 . 45,2 d A2 IV A4 V 2,4 2,3 KEL 1
Vel μ Vel V 2,8 5,7 2,3″ 2019 143 a G5 III G2 V R 155 10468-4925 36 [24] (S)
Vel ψ Vel V 3,9 5,1 1,0″ 2019 34,1 a F3 IV F0 IV COP 1 09307-4028 19 [13] (S)
Vel B Vel V 5,1 6,1 0,9″ 2008 I 67 08225-4829 530
Vel p Vel 1 (A/B) V 4,1 5,8 0,1″ 2019 16,7 a F3 IV + F0 V A6 V Σ 3,9 2,4 SEE 119 10373-4814 27 [231] (UAa/Ab, S, M)
2 (Aa/Ab) SB 4,1 . 10,2 d F3 IV F0 V 2,1 1,8
Vel s Vel V 5,6 6,0 13,2″ 2010 B8–A0 B8 II: PZ 3 10320-4504 260
Vel 33 G. Vel 1 (A/B) V 5,5 7,2 3,5″ 2008 B1,5 V B4 V HJ 4104 08291-4756 480
2 (Aa/Ab) SI 5,9 6,4 0,1″ 2018 340 a B1,5 V FIN 315
Vel HR 3817 V 5,5 6,2 2,0″ 2008 HJ 4220 09337-4900 250
Vel HR 3840 V 6,1 6,3 0,7″ 2015 SEE 115 09372-5340 72
Vel HR 3976 V 5,3 7,1 1,0″ 2019 187 a K1 IV G5 V I 173 10062-4722 74 [24] (S)
Vel Luhman 16 V(aO) 16,2 . 0,3″ 2016 27,4 a L7,5 T0,5 0,03 0,03 LUH 16 10493-5319 2,0 [30] (V), [232] (S, M, d)
Vir α Vir (Spica) SB 1,3 4,5 4,01 d B1 III–IV B2 V 11,4 ± 1,2 7,2 ± 0,8 OCC 418 13252-1110 77 [13] (S), [233] (M)
Vir γ Vir (Porrima) V 3,5 3,5 2,5″ 2020 169 a F0 V F0 V 1,4 1,4 STF 1670 12417-0127 12,1 [13] (S), [234] (M, d)
Vir η Vir 1 (A/B) SI 3,9 5,9 0,1″ 2020 13,1 a A2 IV + A8–F0 V Σ 4,4 1,7 MCA 37 12199-0040 79 [235][236] (UAa/Ab, S, M)
2 (Aa/Ab) SB 3,9 . 71,8 d A2 IV A8–F0 V 2,5 1,9
Vir θ Vir 1 (A/B) V 4,4 9,4 7,0″ 2015 STF 1724 13099-0532 83
2 (Aa/Ab) SI 4,5 6,8 0,4″ 2019 700 a MCA 38
Vir ι Vir A 4,1 . 55 a iot Vir 14160-0600 22
Vir λ Vir I/SB 4,5 . 207 d A1m A1m 1,9 1,7 IOT 1 14191-1322 53 [33] (S, M)
Vir φ Vir V 4,9 10,0 4,8″ 2015 G2 III G4 V STF 1846 14282-0214 37 [24] (S)
Vir 46 Vir V 6,2 8,8 0,6″ 2016 900 a AGC 5 13006-0322 100
Vir 48 Vir V 7,1 7,7 0,4″ 2018 440 a BU 929 13039-0340 160
Vir 54 Vir V 6,8 7,2 5,4″ 2018 B9 V A2 VpSr SHJ 151 13134-1850 190
Vir 84 Vir V 5,6 8,3 2,7″ 2015 G8 III G3 IV STF 1777 13431+0332 73
Vir 86 Vir 1 (AB/CD) CPM 5,6 11,9 27,3″ 2000 STF 1780 13459-1226 110
2 (A/B) V 5,7 8,5 1,0″ 2001 BU 935
2 (C/D) V 11,9 13,1 2,4″ 1958 STF 1780
Vir HR 4935 V 6,3 6,5 0,2″ 2020 59 a BU 341 13038-2035 28
Vir HR 5106 V 6,3 7,3 0,4″ 2019 178 a BU 932 13347-1313 150
Vir Wolf 424 V 12,6 12,6 0,7″ 2020 15,8 a M5,5 V M7 V 0,14 0,13 REU 1 12335+0901 4,4 [40] (S), [237] (M)
Vol γ Vol V 3,9 5,4 14,2″ 2020 K0 III F0–3 DUN 42 07087-7030 40
Vol ε Vol 1 (A/B) V 4,4 7,3 5,7″ 2020 RMK 7 08079-6837 230 [3] (U)
2 (Aa/Ab) SB 4,4 . 14,2 d
Vol ζ Vol V 4,0 9,3 16,0″ 2020 DUN 57 07418-7236 43
Vol κ Vol 1 (κ1/2 = AB / C) CPM 4,7 7,7 98,4″ 2020 B9 III–IV + B9–A0 IV BSO 17 08198-7131 130
1 (κ1 = A / κ2 = B) CPM 5,3 5,6 64,0″ 2020 B9 III–IV B9–A0 IV BSO 17
Vul 2 Vul V 5,4 8,8 1,8″ 2015 BU 248 19177+2302 570
Vul 13 Vul V 4,6 7,4 1,4″ 2016 620 a DJU 4 19535+2405 95
Vul 16 Vul V 5,8 6,2 0,7″ 2019 1200 a STT 395 20020+2456 68
Vul 23 Vul SI 4,8 6,5 0,0″ 2007 25,3 a CHR 94 20158+2749 100

Häufige Entdeckercodes


Nachfolgend findet sich eine Auswahl der Bedeutung von einigen häufigen Entdeckercodes:


Quellen



Allgemeine Quellen


Solange in der Spalte „Quelle“ nichts anderes angegeben ist, stammen:


Einzelnachweise


Alle Massen und alle nicht aus den allgemeinen Quellen entnommenen Daten stammen aus folgenden Quellen:

  1. Dimitri Pourbaix: Resolved double-lined spectroscopic binaries: A neglected source of hypothesis-free parallaxes and stellar masses. In: Astronomy & Astrophysics Supplement Series. Bd. 145, 2000, S. 215–222, bibcode:2000A&AS..145..215P, doi:10.1051/aas:2000237.
  2. José A. Docobo, Manuel Andrade: A Methodology for the Description of Multiple Stellar Systems with Spectroscopic Subcomponents. In: The Astrophysical Journal. Bd. 652 (1), 2006, S. 681–695, bibcode:2006ApJ...652..681D, doi:10.1086/508053.
  3. Dimitri Pourbaix et al.: 9th Catalogue of Spectroscopic Binary Orbits. VizieR-Datenkatalog B/sb9 (elektronisch veröffentlicht). 2009, bibcode:2009yCat....102020P.
  4. Michael Bottom et al.: Resolving the Delta Andromedae Spectroscopic Binary with Direct Imaging. In: The Astrophysical Journal. Bd. 809 (1), 2015, Artikel-ID 11, bibcode:2015ApJ...809...11B, doi:10.1088/0004-637X/809/1/11, arxiv:1506.07517.
  5. Peter P. Eggleton, Kadri Yakut: Models for Sixty Double-Lined Binaries containing Giants. In: Monthly Notices of the Royal Astronomical Society. Bd. 468 (3), 2017, S. 3533–3556, bibcode:2017MNRAS.468.3533E, doi:10.1093/mnras/stx598, arxiv:1611.05041.
  6. G. M. Hill et al.: Omicron Andromedae is Quadruple. In: Publications of the Astronomical Society of the Pacific. Bd. 100, 1988, S. 243–250, bibcode:1988PASP..100..243H, doi:10.1086/132161.
  7. R. Ya. Zhuchkov et al.: Physical parameters and dynamical properties of the multiple star o And. In: Astronomy Reports. Bd. 54 (12), 2010, S. 1134 ff., bibcode:2010ARep...54.1134Z, doi:10.1134/S1063772910120061.
  8. Christian A. Hummel et al.: Orbits of Small Angular Scale Binaries Resolved with the Mark III Interferometer. In: The Astronomical Journal. Bd. 110, 1995, 376–390, bibcode:1995AJ....110..376H, doi:10.1086/117528.
  9. Matthew W. Muterspaugh et al.: The Phases Differential Astrometry Data Archive. II. Updated Binary Star Orbits and a Long Period Eclipsing Binary. In: The Astronomical Journal. Bd. 140 (6), S. 1623–1630, bibcode:2010AJ....140.1623M, doi:10.1088/0004-6256/140/6/1623, arxiv:1010.4043.
  10. Christopher D. Farrington et al.: Separated Fringe Packet Observations with the CHARA Array. II. ω Andromeda, HD 178911, and ξ Cephei. In: The Astronomical Journal. Bd 148 (3), 2014, Artikel-ID 48, bibcode:2014AJ....148...48F, doi:10.1088/0004-6256/148/3/48, arxiv:1407.0639.
  11. Z. Cvetković, S. Ninković: Masses of visual binaries. VizieR-Datenkatalog J/other/Ser/180.71 (elektronisch veröffentlicht). 2011, bibcode:2011yCatp042018001C.
  12. Theo A. ten Brummelaar et al.: Binary Star Differential Photometry Using the Adaptive Optics System at Mount Wilson Observatory. In: The Astronomical Journal. Bd. 119 (5), 2000, S. 2403–2414, bibcode:2000AJ....119.2403T, doi:10.1086/301338.
  13. Dorrit Hoffleit, Wayne H. Warren, Jr.: Bright Star Catalogue, 5th Revised Ed. VizieR-Datenkatalog V/50 (elektronisch veröffentlicht). 1995, bibcode:1995yCat.5050....0H. Die Spektralklassen stammen entweder direkt aus dem Katalog oder aus dem Bereich Note/Remarks.
  14. Jesus Maldonado et al.: HADES RV Programme with HARPS-N at TNG. III. Flux-flux and activity-rotation relationships of early-M dwarfs. In: Astronomy & Astrophysics. Bd. 598, 2017, Artikel-ID A27, bibcode:2017A&A...598A..27M, doi:10.1051/0004-6361/201629223, arxiv:1610.05906.
  15. Matteo Pinamonti et al.: The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: a multiple wide planetary system sculpted by binary interaction. In: Astronomy & Astrophysics. Bd. 617, 2018, Artikel-ID A104, bibcode:2018A&A...617A.104P, doi:10.1051/0004-6361/201732535, arxiv:1804.03476.
  16. José A. Docobo, Manuel Andrade: Dynamical and physical properties of 22 binaries discovered by W. S. Finsen. In: Monthly Notices of the Royal Astronomical Society. Bd. 428 (1), 2013, S. 321–339, bibcode:2013MNRAS.428..321D, doi:10.1093/mnras/sts045.
  17. Sandy K. Leggett et al.: The Physical Properties of Four ~600 K T Dwarfs. In: The Astrophysical Journal. Bd. 695 (2), 2009, S. 1517–1526, bibcode:2009ApJ...695.1517L, doi:10.1088/0004-637X/695/2/1517, arxiv:0901.4093.
  18. Klaus Fuhrmann: Nearby stars of the Galactic disc and halo – IV. In: Monthly Notices of the Royal Astronomical Society. Bd. 384 (1), 2008, S. 173–224, bibcode:2008MNRAS.384..173F, doi:10.1111/j.1365-2966.2007.12671.x.
  19. Nancy Remage Evans et al.: Binary Cepheids: Separations and Mass Ratios in 5 M Binaries. In: The Astronomical Journal. Bd. 146 (4), 2013, Artikel-ID 93, bibcode:2013AJ....146...93E, doi:10.1088/0004-6256/146/4/93, arxiv:1307.7123.
  20. Brian D. Mason et al.: Binary Star Orbits. IV. Orbits of 18 Southern Interferometric Pairs. In: The Astronomical Journal. Bd. 140 (3), 2010, S. 735–743, bibcode:2010AJ....140..735M, doi:10.1088/0004-6256/140/3/735.
  21. Petr Zasche et al.: A Catalog of Visual Double and Multiple Stars With Eclipsing Components. In: The Astronomical Journal. Bd. 138 (2), 2009, S. 664–679, bibcode:2009AJ....138..664Z, doi:10.1088/0004-6256/138/2/664, arxiv:0907.5172.
  22. Jeffrey L. Linsky et al.: Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10. In: The Astrophysical Journal. Bd. 455, 1995, S. 670–676, bibcode:1995ApJ...455..670L, doi:10.1086/176614.
  23. Olivier Absil et al.: Searching for faint companions with VLTI/PIONIER. I. Method and first results. In: Astronomy & Astrophysics. Bd. 535, 2011, Artikel-ID A68, bibcode:2011A&A...535A..68A, doi:10.1051/0004-6361/201117719, arxiv:1110.1178.
  24. Terry W. Edwards: MK classification for visual binary components. In: The Astronomical Journal. Bd. 81, 1976, S. 245–249, bibcode:1976AJ.....81..245E, doi:10.1086/111879.
  25. Andrei A. Tokovinin: The Triple System Zeta Aquarii. In: The Astrophysical Journal. Bd. 831 (2), 2016, Artikel-ID 151, bibcode:2016ApJ...831..151T, doi:10.3847/0004-637X/831/2/151, arxiv:1608.08564.
  26. Ellyn K. Baines et al.: Fundamental Parameters of 87 Stars from the Navy Precision Optical Interferometer. In: The Astronomical Journal. Bd. 155 (1), 2018, Artkikel-ID 30, bibcode:2018AJ....155...30B, doi:10.3847/1538-3881/aa9d8b, arxiv:1712.08109.
  27. Rene A. Mendez et al.: Orbits for 18 Visual Binaries and Two Double-line Spectroscopic Binaries Observed with HRCAM on the CTIO SOAR 4 m Telescope, Using a New Bayesian Orbit Code Based on Markov Chain Monte Carlo. In: The Astronomical Journal. Bd. 154 (5), 2017, Artikel-ID 187, bibcode:2017AJ....154..187M, doi:10.3847/1538-3881/aa8d6f, arxiv:1709.06582.
  28. Andrei A. Tokovinin: New Orbits Based on Speckle Interferometry at SOAR. II. In: The Astronomical Journal. Bd. 154 (3), 2017, Artikel-ID 110, bibcode:2017AJ....154..110T, doi:10.3847/1538-3881/aa8459, arxiv:1708.01300.
  29. José A. Docobo et al.: Visual Orbit and Individual Masses of the Single-lined Spectroscopic Binary 94 AQR A (HD 219834A; MCA 74). In: The Astronomical Journal. Bd. 156 (3), 2018, Artikel-ID 85, bibcode:2018AJ....156...85D, doi:10.3847/1538-3881/aad179.
  30. V-Helligkeit aus der SIMBAD-Datenbank entnommen.
  31. M. Gromadzki, Joanna Mikołajewska: The spectroscopic orbit and the geometry of R Aquarii. In: Astronomy & Astrophysics. Bd. 495 (3), 2009, S. 931–936, bibcode:2009A&A...495..931G, doi:10.1051/0004-6361:200810052, arxiv:0804.4139.
  32. Xavier Delfosse et al.: Accurate masses of very low mass stars. II. The very low mass triple system GL 866. In: Astronomy & Astrophysics. Bd. 350, 1999, L39–L42, bibcode:1999A&A...350L..39D, arxiv:astro-ph/9909409.
  33. Guillermo Torres, J. Andersen, A. Giménez: Accurate masses and radii of normal stars: modern results and applications. In: The Astronomy & Astrophysics Review. Bd. 18 (1–2), 2010, S. 67–126, bibcode:2010A&ARv..18...67T, doi:10.1007/s00159-009-0025-1, arxiv:0908.2624.
  34. Hicran Bakıș et al.: Active binary R Arae revisited: Bringing the secondary component to light and physical modelling of the circumstellar material. In: Monthly Notices of the Royal Astronomical Society. Bd. 458 (1), 2016, S. 508–516, bibcode:2016MNRAS.458..508B, doi:10.1093/mnras/stw320.
  35. Brian D. Mason: Binary Star Orbits from Speckle Interferometry. XI. Orbits of Twelve Lunar Occultation Systems. In: The Astronomical Journal. Bd. 114, 1997, S. 808–818, bibcode:1997AJ....114..808M, doi:10.1086/118514.
  36. Matthew W. Muterspaugh et al.: The Phases Differential Astrometry Data Archive. V. Candidate Substellar Companions to Binary Systems. In: The Astronomical Journal. Bd. 140 (6), 2010, S. 1657–1671, bibcode:2010AJ....140.1657M, doi:10.1088/0004-6256/140/6/1657, arxiv:1010.4048.
  37. Lewis C. Roberts, Jr. et al.: Know the Star, Know the Planet. III. Discovery of Late-Type Companions to Two Exoplanet Host Stars. In: The Astronomical Journal. Bd. 149 (4), 2015, Artikel-ID 118, bibcode:2015AJ....149..118R, doi:10.1088/0004-6256/149/4/118, arxiv:1503.01211.
  38. José A. Docobo et al.: Improved orbits and parallaxes for eight visual binaries with unrealistic previous masses using the Hipparcos parallax. In: Monthly Notices of the Royal Astronomical Society. Bd. 459 (2), 2016, S. 1580–1585, bibcode:2016MNRAS.459.1580D, doi:10.1093/mnras/stw709, arxiv:1609.03392.
  39. Guillermo Torres et al.: Capella (α Aurigae) Revisited: New Binary Orbit, Physical Properties, and Evolutionary State. In: The Astrophysical Journal. Bd. 807 (1), 2015, Artikel-ID 26, bibcode:2015ApJ...807...26T, doi:10.1088/0004-637X/807/1/26, arxiv:1505.07461.
  40. Wilhelm Gliese, Hartmut Jahreiß: Preliminary Version of the Third Catalogue of Nearby Stars. VizieR-Datenkatalog V/70A (elektronisch veröffentlicht). 1991, bibcode:1991adc..rept.....G.
  41. Donald W. Hoard et al.: Taming the Invisible Monster: System Parameter Constraints for epsilon Aurigae from the Far-ultraviolet to the Mid-infrared. In: The Astrophysical Journal. Bd. 714 (1), 2010, S. 549–560, bibcode:2010ApJ...714..549H, doi:10.1088/0004-637X/714/1/549, arxiv:1003.3694.
  42. Sean M. Carroll: Interpreting Epsilon Aurigae. In: The Astrophysical Journal. Bd. 367, 1991, S 278–287, bibcode:1991ApJ...367..278C, doi:10.1086/169626.
  43. E. F. Guinan: Large distance of ε Aurigae inferred from interstellar absorption and reddening. In: Astronomy & Astrophysics. Bd. 546, 2012, Artikel-ID A123, bibcode:2012A&A...546A.123G, doi:10.1051/0004-6361/201118567.
  44. Z. Cvetković, B. Novaković: Orbits For Sixteen Binaries. In: Serbian Astronomical Journal. Bd. 173, 2006, S. 73–82, bibcode:2006SerAJ.173...73C, doi:10.2298/SAJ0673073C.
  45. Martin Adrian Barstow et al.: Resolving Sirius-like binaries with the Hubble Space Telescope. In: Monthly Notices of the Royal Astronomical Society. Bd. 322 (4), 2001, S. 891–900, bibcode:2001MNRAS.322..891B, doi:10.1046/j.1365-8711.2001.04203.x, arxiv:astro-ph/0010645.
  46. Jay B. Holberg et al.: Where are all the Sirius-like binary systems? In: Monthly Notices of the Royal Astronomical Society. Bd. 435 (3), 2013, S. 2077–2091, bibcode:2013MNRAS.435.2077H, doi:10.1093/mnras/stt1433, arxiv:1307.8047.
  47. F. M. Rica Romero: Orbital Elements for BU 1240 AB. Nature of the C and D Components. In: Revista Mexicana de Astronomía y Astrofísica. Bd. 44, 2008, S. 137–147, bibcode:2008RMxAA..44..137R.
  48. R. K. Barry et al.: A Precise Physical Orbit for the M-dwarf Binary Gliese 268. In: The Astrophysical Journal. Bd. 760 (1), 2012, Artikel-ID 55, bibcode:2012ApJ...760...55B, doi:10.1088/0004-637X/760/1/55.
  49. J. Fernandes et al.: Fundamental stellar parameters for nearby visual binary stars: η Cas, ξ Boo, 70 Oph and 85 Peg. Helium abundance, age and mixing length parameter for low mass stars. In: Astronomy & Astrophysics, Bd. 338, 1998, S. 455–464, bibcode:1998A&A...338..455F.
  50. Francesco Borsa et al.: The GAPS programme with HARPS-N at TNG. VII. Putting exoplanets in the stellar context: magnetic activity and asteroseismology of τ Bootis A. In: Astronomy & Astrophysics. Bd. 578, 2015, Artikel-ID A64, bibcode:2015A&A...578A..64B, doi:10.1051/0004-6361/201525741, arxiv:1504.00491.
  51. Graham Hill et al.: Studies of late-type binaries. I – The physical parameters of 44ι Bootis ABC. In: Astronomy & Astrophysics. Bd. 211 (1), 1989, S. 81–98, bibcode:1989A&A...211...81H.
  52. Zackery W. Briesemeister et al.: High Spatial Resolution Thermal Infrared Spectroscopy with ALES: Resolved Spectra of the Benchmark Brown Dwarf Binary HD 130948BC. In: The Astronomical Journal. Bd. 157 (6), 2019, Artikel-ID 244, bibcode:2019AJ....157..244B, doi:10.3847/1538-3881/ab1901, arxiv:1904.07892.
  53. Brian D. Mason et al.: Binary Star Orbits from Speckle Interferometry. I. Improved Orbital Elements of 22 Visual Systems. In: The Astronomical Journal. Bd. 117 (2), 1999, S. 1023–1036, bibcode:1999AJ....117.1023M, doi:10.1086/300748.
  54. Douglas S. Hall et al.: A Spectroscopic and Photometric Study of 12 BM Camelopardalis. In: The Astronomical Journal. Bd 109, 1995, S. 1277–1288, bibcode:1995AJ....109.1277H, doi:10.1086/117360.
  55. Kailash C. Sahu et al.: Relativistic deflection of background starlight measures the mass of a nearby white dwarf star. In: Science. Bd. 356 (6342), 2017, S. 1046–1050, bibcode:2017Sci...356.1046S, doi:10.1126/science.aal2879, arxiv:1706.02037.
  56. David S. Evans, Francis C. Fekel, Jr.: Beta Capricorni: fundamental parameters from occultation astrometry and spectroscopy. In: The Astrophysical Journal. Bd. 228, 1979, S. 497–508, bibcode:1979ApJ...228..497E, doi:10.1086/156872.
  57. Swetlana Hubrig et al.: New insights into the nature of the peculiar star θ Carinae. In: Astronomy & Astrophysics. Bd. 488 (1), 2008, S. 287–296, bibcode:2008A&A...488..287H, doi:10.1051/0004-6361:200809972, arxiv:0807.2067.
  58. Robert J. De Rosa et al.: The Volume-limited A-Star (VAST) survey – II. Orbital motion monitoring of A-type star multiples. In: Monthly Notices of the Royal Astronomical Society. Bd. 422 (4), 2012, S. 2765–2785, bibcode:2012MNRAS.422.2765D, doi:10.1111/j.1365-2966.2011.20397.x, arxiv:1112.3666.
  59. Myron A. Smith et al.: The relationship between γ Cassiopeiae’s X-ray emission and its circumstellar environment. In: Astronomy & Astrophysics. Bd. 540, 2012, Artikel-ID A53, bibcode:2012A&A...540A..53S, doi:10.1051/0004-6361/201118342, arxiv:1201.6415.
  60. Brian D. Mason et al.: The Washington Visual Double Star Catalog. VizieR-Datenkatalog B/wds (elektronisch veröffentlicht). 2021, bibcode:2021yCat....102026M.
  61. Julian C. Christou, Jack D. Drummond: Measurements of Binary Stars, Including Two New Discoveries, with the Lick Observatory Adaptive Optics System. In: The Astronomical Journal. Bd. 131 (6), 2006, S. 3100–3108, bibcode:2006AJ....131.3100C, doi:10.1086/503255.
  62. Jack D. Drummond et al.: ι Cassiopeiae: Orbit, Masses, and Photometry from Adaptive Optics Imaging in the I and H Bands. In: The Astrophysical Journal. Bd. 585 (2), 2003, S. 1007–1014, bibcode:2003ApJ...585.1007D, doi:10.1086/346224.
  63. Howard E. Bond et al.: Hubble Space Telescope Astrometry of the Metal-poor Visual Binary μ Cassiopeiae: Dynamical Masses, Helium Content, and Age. In: The Astrophysical Journal. Bd. 904 (2), 2020, Arikel-ID 112, bibcode:2020ApJ...904..112B, doi:10.3847/1538-4357/abc172, arxiv:2010.06609.
  64. Robert J. De Rosa et al.: The VAST Survey – III. The multiplicity of A-type stars within 75 pc. In: Monthly Notices of the Royal Astronomical Society. Bd. 437 (2), 2014, S. 1216–1240, bibcode:2014MNRAS.437.1216D, doi:10.1093/mnras/stt1932, arxiv:1311.7141.
  65. David E. Holmgren et al.: Search for forced oscillations in binaries. III. Improved elements and the detection of line-profile variability of the B4V + A6V: system AR Cassiopeiae. In: Astronomy & Astrophysics. Bd. 345, 1999, S. 855–868, bibcode:1999A&A...345..855H.
  66. Pierre Kervella et al.: Proxima's orbit around α Centauri. In: Astronomy & Astrophysics. Bd. 598, 2017, Artikel-ID L7, bibcode:2017A&A...598L...7K, doi:10.1051/0004-6361/201629930, arxiv:1611.03495.
  67. Andrzej Pigulski et al.: Massive pulsating stars observed by BRITE-Constellation. I. The triple system β Centauri (Agena). In: Astronomy & Astrophysics. Bd. 588, 2016, Artikel-ID A55, bibcode:2016A&A...588A..55P, doi:10.1051/0004-6361/201527872, arxiv:1602.02806.
  68. Andrei A. Tokovinin: Speckle Interferometry and Orbits of "Fast" Visual Binaries. In: The Astronomical Journal. Bd. 144 (2), 2012, Artikel-ID 56, bibcode:2012AJ....144...56T, doi:10.1088/0004-6256/144/2/56, arxiv:1206.1882.
  69. E. Budding et al.: Absolute parameters of young stars – II. V831 Centauri. In: Monthly Notices of the Royal Astronomical Society. Bd. 403 (3), 2010, S. 1448–1456, bibcode:2010MNRAS.403.1448B, doi:10.1111/j.1365-2966.2010.16209.x.
  70. Hugh Wheelwright et al.: The close Be star companion of β Cephei. In: Astronomy & Astrophysics. Bd. 497 (2), 2009, S. 487–495, bibcode:2009A&A...497..487W, doi:10.1051/0004-6361/200811105, arxiv:0902.4356.
  71. Ralph Neuhäuser et al.: Direct detection of exoplanet host star companion γ Cep B and revised masses for both stars and the sub-stellar object. In: Astronomy & Astrophysics. Bd. 462 (2), 2007, S. 777–780, bibcode:2007A&A...462..777N, doi:10.1051/0004-6361:20066581, arxiv:astro-ph/0611427.
  72. George Gatewood et al.: Hipparcos and MAP Studies of the Triple Star π Cephei. In : The Astrophysical Journal. Bd. 549 (2), 2001, S. 1145–1150, bibcode:2001ApJ...549.1145G, doi:10.1086/319458.
  73. K. O. Wright: The System of VV Cephei Derived from an Analysis of the Hα Line. In: Journal of the Royal Astronomical Society of Canada. Bd. 71, 1977, S. 152–193, bibcode:1977JRASC..71..152W.
  74. L. Leedjärv et al.: The 1997/1998 eclipse of VV Cephei was late. In: Astronomy & Astrophysics. Bd. 349, 1999, S. 511–514, bibcode:1999A&A...349..511L.
  75. Wendy Hagen Bauer et al.: Spatial Extension in the Ultraviolet Spectrum of VV Cephei. In: The Astronomical Journal. Bd. 136 (3), 2008, S. 1312–1324, bibcode:2008AJ....136.1312H, doi:10.1088/0004-6256/136/3/1312.
  76. Xavier Delfosse et al.: Accurate masses of very low mass stars. IV. Improved mass-luminosity relations. In: Astronomy & Astrophysics. Bd. 364, 2000, S. 217–224, bibcode:2000A&A...364..217D, arxiv:astro-ph/0010586.
  77. S. P. Wyatt, J. H. Cahn: Kinematics and ages of Mira variables in the greater solar neighborhood. In: The Astrophysical Journal. Bd. 275, 1983, S. 225–239, bibcode:1983ApJ...275..225W, doi:10.1086/161527.
  78. G. Fritz Benedict et al.: The Solar Neighborhood. XXXVII: The Mass-Luminosity Relation for Main-sequence M Dwarfs. In: The Astronomical Journal. Bd. 152 (5), 2016, Artikel-ID 141, bibcode:2016AJ....152..141B, doi:10.3847/0004-6256/152/5/141, arxiv:1608.04775.
  79. César Briceño, Andrei A. Tokovinin: New Binaries in the ɛ Cha Association. In: The Astronomical Journal. Bd. 154 (5), 2017, Artikel-ID 195, bibcode:2017AJ....154..195B, doi:10.3847/1538-3881/aa8e9b, arxiv:1709.05044.
  80. Howard E. Bond et al.: The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based Astrometry. In: The Astrophysical Journal. Bd. 840 (2), 2017, Artikel-ID 70, bibcode:2017ApJ...840...70B, doi:10.3847/1538-4357/aa6af8, arxiv:1703.10625.
  81. Jesús Maíz Apellániz, R. H. Barbá: Spatially resolved spectroscopy of close massive visual binaries with HST/STIS. I. Seven O-type systems. In: Astronomy & Astrophysics. Bd. 636, 2020, Artikel-ID A28, bibcode:2020A&A...636A..28M, doi:10.1051/0004-6361/202037730, arxiv:2002.12149.
  82. William G. Bagnuolo, Jr. et al.: Tomographic Separation of Composite Spectra. II. The Components of 29 UW Canis Majoris. In: The Astrophysical Journal. Bd. 423, 1994, S. 446–455, bibcode:1994ApJ...423..446B, doi:10.1086/173822.
  83. James Liebert et al.: The Age and Stellar Parameters of the Procyon Binary System. In: The Astrophysical Journal. Bd. 769 (1), 2013, Artikel-ID 7, bibcode:2013ApJ...769....7L, doi:10.1088/0004-637X/769/1/7, arxiv:1305.0587.
  84. J. B. Hutchings et al.: Direct Observation of the Fourth Star in the ζ Cancri System. In: Publications of the Astronomical Society of the Pacific. Bd. 112 (772), 2000, S. 833–836, bibcode:2000PASP..112..833H, doi:10.1086/316587, arxiv:astro-ph/0004284.
  85. Adam J. Burgasser et al.: Multiplicity among Widely Separated Brown Dwarf Companions to Nearby Stars: Gliese 337CD. In: The Astronomical Journal. Bd. 129 (6), 2005, S. 2849–2855, bibcode:2005AJ....129.2849B, doi:10.1086/430218, arxiv:astro-ph/0503379.
  86. Roxanne Ligi et al.: Radii, masses, and ages of 18 bright stars using interferometry and new estimations of exoplanetary parameters. In: Astronomy & Astrophysics. Bd. 586, 2016, Artikel-ID A94, bibcode:2016A&A...586A..94L, doi:10.1051/0004-6361/201527054, {{arXiv:1511.03197}}.
  87. Elisabeth R. Newton et al.: The Hα Emission of Nearby M Dwarfs and its Relation to Stellar Rotation. In: The Astrophysical Journal. Bd. 834 (1), 2017, Artikel-ID 85, bibcode:2017ApJ...834...85N, doi:10.3847/1538-4357/834/1/85, arxiv:1611.03509.
  88. Maciej Konacki et al.: High-precision Orbital and Physical Parameters of Double-lined Spectroscopic Binary Stars – HD78418, HD123999, HD160922, HD200077, and HD210027. In: The Astrophysical Journal. Bd. 719 (2), 2010, S. 1293–1314, bibcode:2010ApJ...719.1293K, doi:10.1088/0004-637X/719/2/1293, arxiv:0910.4482.
  89. Gijs H. A. Roelofs et al.: Spectroscopic Evidence for a 5.4 Minute Orbital Period in HM Cancri. In: The Astrophysical Journal Letters. Bd. 711 (2), 2010, L138–L142, bibcode:2010ApJ...711L.138R, doi:10.1088/2041-8205/711/2/L138, arxiv:1003.0658.
  90. N. Todorović, R. Pavlović: Orbits of Seven Edge-On Visual Double Stars. In: Serbian Astronomical Journal. Bd. 170, 2005, S. 73–78, bibcode:2005SerAJ.170...73P, doi:10.2298/SAJ0570073P.
  91. John M. Brewer et al.: Spectral Properties of Cool Stars: Extended Abundance Analysis of 1,617 Planet-search Stars. In: The Astrophysical Journal Supplement Series. Bd. 225 (2), 2016, Artikel-ID 32, bibcode:2016ApJS..225...32B, doi:10.3847/0067-0049/225/2/32, arxiv:1606.07929.
  92. J. Tomkin, D. M. Popper: Rediscussion of eclipsing binarties. XV. Alpha Coronae Borealis, a main-sequence system with components of types A and G. In: The Astronomical Journal. Bd. 91, 1986, S. 1428–1437, bibcode:1986AJ.....91.1428T, doi:10.1086/114121.
  93. Hans Bruntt et al.: The radius and effective temperature of the binary Ap star β CrB from CHARA/FLUOR and VLT/NACO observations. In: Astronomy & Astrophysics. Bd. 512, 2010, Artikel-ID A55, bibcode:2010A&A...512A..55B, doi:10.1051/0004-6361/200913405, arxiv:0912.3215.
  94. Deepak Raghavan et al.: The Visual Orbit of the 1.1 Day Spectroscopic Binary σ2 Coronae Borealis from Interferometry at the Chara Array. In: The Astrophysical Journal. Bd. 690 (1), 2009, S. 394–406, bibcode:2009ApJ...690..394R, doi:10.1088/0004-637X/690/1/394, arxiv:0808.4015.
  95. Carlos A. Hernández, Elida B. de Hernández: The orbital elements of 25 G CRU (HD 108250). In: Revista Mexicana de Astronomía y Astrofísica. Bd. 4, 1979, S. 297–300, bibcode:1979RMxAA...4..297H.
  96. Francis C. Fekel et al.: Absolute Properties of the Eclipsing Binary VV Corvi. In: The Astronomical Journal. Bd. 146 (6), 2013, Artikel-ID 146, bibcode:2013AJ....146..146F, doi:10.1088/0004-6256/146/6/146.
  97. Zeki Eker, L. R. Doherty: Hα region spectroscopy of the RS CVn system HR 5110. In: Monthly Notices of the Royal Astronomical Society. Bd. 228, 1987, S. 869–881, bibcode:1987MNRAS.228..869E, doi:10.1093/mnras/228.4.869.
  98. Ronald Drimmel et al.: A celestial matryoshka: dynamical and spectroscopic analysis of the Albireo system. In: Monthly Notices of the Royal Astronomical Society. Bd. 502 (1), 2021, S. 328–350, bibcode:2021MNRAS.502..328D, doi:10.1093/mnras/staa4038, arxiv:2012.01277.
  99. Fang Xia, Yanning Fu: The Dynamical State and Long-term Stability of HIP 102589. In: The Astrophysical Journal. Bd. 814 (1), 2015, Artikel-ID 64, bibcode:2015ApJ...814...64X, doi:10.1088/0004-637X/814/1/64.
  100. Joel A. Eaton et al.: Orbits and Pulsations of the Classical ζ Aurigae Binaries. In: The Astrophysical Journal. Bd. 679 (2), 2008, S. 1490–1498, bibcode:2008ApJ...679.1490E, doi:10.1086/587452, arxiv:0802.2238.
  101. Francis C. Fekel: The Spectroscopic Orbit of φ Cygni, a System with Two Late-Type Giants. In: Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias). Bd. 21, 2004, S. 63–64, bibcode:2004RMxAC..21...63F.
  102. Heather M. Hauser, Geoffrey W. Marcy: The Orbit of 16 Cygni AB. In: Publications of the Astronomical Society of the Pacific. Bd. 111 (757), 1999, S. 321–334, bibcode:1999PASP..111..321H, doi:10.1086/316328.
  103. Marcelo Tucci Maia et al.: Revisiting the 16 Cygni planet host at unprecedented precision and exploring automated tools for precise abundances. In: Astronomy & Astrophysics. Bd. 628, 2019, Artikel-ID A126, bibcode:2019A&A...628A.126M, doi:10.1051/0004-6361/201935952, arxiv:1906.04195.
  104. Pierre Kervella et al.: The radii of the nearby K5V and K7V stars 61 Cygni A & B. CHARA/FLUOR interferometry and CESAM2k modeling. In: Astronomy & Astrophysics. Bd. 488 (2), 2008, S. 667–674, bibcode:2008A&A...488..667K, doi:10.1051/0004-6361:200810080, arxiv:0806.4049.
  105. Nicholas Law et al.: The LuckyCam survey for very low mass binaries – II. 13 new M4.5-M6.0 binaries. In: Monthly Notices of the Royal Astronomical Society. Bd. 384 (1), 2008, S. 150–160, bibcode:2008MNRAS.384..150L, doi:10.1111/j.1365-2966.2007.12675.x, arxiv:0704.1812.
  106. Tyler Gardner et al.: ARMADA. I. Triple Companions Detected in B-type Binaries α Del and ν Gem. In: The Astronomical Journal. Bd. 161 (1), 2021, Artikel-ID 40, bibcode:2021AJ....161...40G, doi:10.3847/1538-3881/abcf4e, arxiv:2012.00778.
  107. James W. Davidson, Jr. et al.: A Photometric Analysis of Seventeen Binary Stars Using Speckle Imaging. In: The Astronomical Journal. Bd. 138 (5), 2009, S. 1354–1364, bibcode:2009AJ....138.1354D; doi:10.1088/0004-6256/138/5/1354.
  108. Tyler Gardner et al.: Precision Orbit of δ Delphini and Prospects for Astrometric Detection of Exoplanets. In: The Astrophysical Journal. Bd. 855 (1),2018, Artikel-ID 1, bibcode:2018ApJ...855....1G, doi:10.3847/1538-4357/aaac80, arxiv:1802.00468.
  109. Jiří Kubát et al.: Spectroscopy of close visual binary components of the stable shell star 1 Delphini. In: Astronomy & Astrophysics. Bd. 587, 2016, Artikel-ID A22, bibcode:2016A&A...587A..22K, doi:10.1051/0004-6361/201526414, arxiv:1601.05236.
  110. Einzelhelligkeiten aus scheinbarer Gesamthelligkeit V = 3,65 mag (Bright Star Catalogue) und Helligkeitsdifferenz ΔmV = 1,8 (Don Hutter et al.: Surveying the Bright Stars by Optical Interferometry. I. A Search for Multiplicity among Stars of Spectral Types F-K. In: The Astrophysical Journal Supplement Series. Bd. 227 (1), 2016, Artikel-ID 4, bibcode:2016ApJS..227....4H, doi:10.3847/0067-0049/227/1/4, arxiv:1609.05254) berechnet.
  111. Bradford B. Behr et al.: Stellar Astrophysics with a Dispersed Fourier Transform Spectrograph. I. Instrument Description and Orbits of Single-lined Spectroscopic Binaries. In: The Astrophysical Journal. Bd. 705 (1), 2009, S. 543–553, bibcode:2009ApJ...705..543B, doi:10.1088/0004-637X/705/1/543, arxiv:0909.3241.
  112. C. Martin et al.: Mass determination of astrometric binaries with Hipparcos. III. New results for 28 systems. In: Astronomy & Astrophysics Supplement. Bd. 133, 1998, S. 149–162, bibcode:1998A&AS..133..149M, doi:10.1051/aas:1998459.
  113. Rachael M. Roettenbacher et al.: Detecting the Companions and Ellipsoidal Variations of RS CVn Primaries. II. o Draconis, a Candidate for Recent Low-mass Companion Ingestion. In: The Astrophysical Journal. Bd. 809 (2), 2015, Artikel-ID 159, bibcode:2015ApJ...809..159R, doi:10.1088/0004-637X/809/2/159, arxiv:1507.03601.
  114. Andrei A. Tokovinin et al.: Fundamental parameters and origin of the very eccentric binary 41 Dra. In: Astronomy & Astrophysics. Bd. 409, 2003, S. 245–250, bibcode:2003A&A...409..245T, doi:10.1051/0004-6361:20031064.
  115. Pierre Kervella et al.: Stellar and substellar companions of nearby stars from Gaia DR2. Binarity from proper motion anomaly. In: Astronomy & Astrophysics. Bd. 623, 2019, Artikel-ID A72, bibcode:2019A&A...623A..72K, doi:10.1051/0004-6361/201834371, arxiv:1811.08902.
  116. Beate Stelzer et al.: Search of X-ray emission from roAp stars: the case of γ Equulei. In: Astronomy & Astrophysics. Bd. 529, 2011, Artikel-ID A29, bibcode:2011A&A...529A..29S, doi:10.1051/0004-6361/201016265, arxiv:1103.0739.
  117. Birgitta Nordström et al.: Geneva-Copenhagen Survey of Solar neighbourhood. VizieR-Datenkatalog V/117A (elektronisch veröffentlicht). 2008, bibcode:2008yCat.5117....0N.
  118. Brian D. Mason et al.: Binary Star Orbits. V. The Nearby White Dwarf/Red Dwarf Pair 40 Eri BC. In: The Astronomical Journal. Bd. 154 (5), 2017, Artikel-ID 200, bibcode:2017AJ....154..200M, doi:10.3847/1538-3881/aa803e, arxiv:1707.03635.
  119. Daryl W. Willmarth et al.: Spectroscopic Orbits for 15 Late-type Stars. In: The Astronomical Journal. Bd. 152 (2), 2016, Artikel-ID 46, doi:10.3847/0004-6256/152/2/46, bibcode:2016AJ....152...46W.
  120. Andrei A. Tokovinin: Kappa Fornaci, A Triple Radio Star. In: The Astronomical Journal. Bd. 145 (3), 2013, Artikel-ID 76, bibcode:2013AJ....145...76T, doi:10.1088/0004-6256/145/3/76, arxiv:1301.1352.
  121. Manuel Andrade, José A. Docobo: The Dynamical Evolution of the Multiple Stellar System α Gem. In: Living Together: Planets, Host Stars and Binaries. ASP Conference Series, Astronomical Society of the Pacific, Bd. 496, 2015, S. 94–98, bibcode:2015ASPC..496...94A.
  122. Aurore Blazère et al.: Discovery of a very weak magnetic field on the Am star Alhena. In: Monthly Notices of the Royal Astronomical Society: Letters. Bd. 459 (1), 2016, L81–L84, bibcode:2016MNRAS.459L..81B, doi:10.1093/mnrasl/slw050, arxiv:1603.06486.
  123. Benjamin F. Lane et al.: The Orbits of the Triple-star System 1 Geminorum from Phases Differential Astrometry and Spectroscopy. In: The Astrophysical Journal. Bd. 783 (1), 2014, Artikel-ID 3, bibcode:2014ApJ...783....3L, doi:10.1088/0004-637X/783/1/3.
  124. Samantha C. Searle et al.: Quantitative studies of the optical and UV spectra of Galactic early B supergiants. I. Fundamental parameters. In: Astronomy & Astrophysics. Bd. 481 (3), 2008, S. 777–797, bibcode:2008A&A...481..777S, doi:10.1051/0004-6361:20077125, arxiv:0801.4289.
  125. Matthew W. Muterspaugh et al.: The Phases Differential Astrometry Data Archive. IV. The Triple Star Systems 63 Gem A and HR 2896. In: The Astronomical Journal. Bd. 140 (6), 2010, S. 1646–1656, bibcode:2010AJ....140.1646M, doi:10.1088/0004-6256/140/6/1646, arxiv:1010.4045.
  126. Ehsan Moravveji et al.: The age and mass of the α Herculis triple-star system from a MESA grid of rotating stars with 1.3 ≤ M/M ≤ 8.0. In: The Astronomical Journal. Bd. 146 (3), 2013, Artikel-ID 148, bibcode:2013AJ....146..148M, doi:10.1088/0004-6256/146/6/148, arxiv:1308.1632.
  127. Xiaopei P. Pan et al.: The Visual Orbit, the Stellar Diameter and the Magnitude Difference of the Spectroscopic Binary β Herculis. In: Bulletin of the American Astronomical Society. Bd. 22, 1990, S. 1335, bibcode:1990BAAS...22R1335P.
  128. Pierre Morel et al.: The ζ Herculis binary system revisited. Calibration and seismology. In: Astronomy & Astrophysics. Bd. 379, 2001, S. 245–256, bibcode:2001A&A...379..245M, doi:10.1051/0004-6361:20011336, arxiv:astro-ph/0110004.
  129. Lewis C. Roberts, Jr. et al.: Characterization of the Companion μ Her. In: The Astronomical Journal. Bd. 151 (6), 2016, Artikel-ID 169, bibcode:2016AJ....151..169R, doi:10.3847/0004-6256/151/6/169, arxiv:1604.06494.
  130. J.-L. Prieur et al.: Speckle observations with PISCO in Merate: XIII. Astrometric measurements of visual binaries in 2012, and new orbits for ADS 10786 BC, 12144, 12515, 16314 and 16539. In: Astronomische Nachrichten. Bd. 335 (8), 2014, S. 817 ff., bibcode:2014AN....335..817P, doi:10.1002/asna.201412054.
  131. Guillermo Torres: Astrometric-Spectroscopic Determination of the Absolute Masses of the HgMn Binary Star φ Herculis. In: The Astronomical Journal. Bd. 133 (6), 2007, S. 2684–2695, bibcode:2007AJ....133.2684T, doi:10.1086/516756, arxiv:astro-ph/0703193.
  132. James Sikora et al.: A volume-limited survey of mCP stars within 100 pc – I. Fundamental parameters and chemical abundances. In: Monthly Notices of the Royal Astronomical Society. Bd. 483 (2), 2019, S. 2300–2324, bibcode:2019MNRAS.483.2300S, doi:10.1093/mnras/sty3105, arxiv:1811.05633.
  133. Grant M. Kennedy et al.: 99 Herculis: host to a circumbinary polar-ring debris disc. In: Monthly Notices of the Royal Astronomical Society. Bd. 421 (3), 2012, S. 2264–2276, bibcode:2012MNRAS.421.2264K, doi:10.1111/j.1365-2966.2012.20448.x, arxiv:1201.1911.
  134. Matthew W. Muterspaugh et al.: Masses, Luminosities, and Orbital Coplanarities of the μ Orionis Quadruple-Star System from Phases Differential Astrometry. In: The Astronomical Journal. Bd. 135 (3), 2008, S. 766–776, bibcode:2008AJ....135..766M, doi:10.1088/0004-6256/135/3/766, arxiv:0710.2126.
  135. E. Zhang et al.: The 71 Second Oscillation in the Light Curve of the Old Nova DQ Herculis. In: The Astrophysical Journal. Bd. 454, 1995, S. 447–462, bibcode:1995ApJ...454..447Z, doi:10.1086/176496.
  136. Lindsay Marion et al.: Searching for faint companions with VLTI/PIONIER. II. 92 main sequence stars from the Exozodi survey. In: Astronomy & Astrophysics. Bd. 570, 2014, Artikel-ID A127, bibcode:2014A&A...570A.127M, doi:10.1051/0004-6361/201424780, arxiv:1409.6105.
  137. Brice-Olivier Demory et al.: Mass-radius relation of low and very low-mass stars revisited with the VLTI. In Astronomy & Astrophysics. Bd. 505 (1), 2009, S. 205–215, bibcode:2009A&A...505..205D, doi:10.1051/0004-6361/200911976, arxiv:0906.0602.
  138. Robert King et al.: ɛ Indi Ba, Bb: a detailed study of the nearest known brown dwarfs. In: Astronomy & Astrophysics. Bd. 510, 2010, Artikel-ID A99, bibcode:2010A&A...510A..99K, doi:10.1051/0004-6361/200912981, arxiv:0911.3143.
  139. Douglas R. Gies et al.: A Spectroscopic Orbit for Regulus. In: The Astrophysical Journal Letters. Bd. 682 (2), 2008, L117–L120, bibcode:2008ApJ...682L.117G, doi:10.1086/591148, arxiv:0806.3473.
  140. Douglas R. Gies et al.: Spectroscopic Detection of the Pre-White Dwarf Companion of Regulus. In: The Astrophysical Journal. Bd. 902 (1), 2020, Artikel-ID 25, bibcode:2020ApJ...902...25G, doi:10.3847/1538-4357/abb372, arxiv:2009.02409.
  141. Saul Rappaport et al.: The Past and Future History of Regulus. In: The Astrophysical Journal. Bd. 698 (1), 2009, S. 666–675, bibcode:2009ApJ...698..666R, doi:10.1088/0004-637X/698/1/666, arxiv:0904.0395.
  142. S.-L. Bi et al.: Seismological Analysis of the Stars γ Serpentis and ι Leonis: Stellar Parameters and Evolution. In: The Astrophysical Journal. Bd. 673 (2), 2008, S. 1093–1105, bibcode:2008ApJ...673.1093B, doi:10.1086/521575.
  143. R. E. M. Griffin, R. F. Griffin: Composite spectra Paper 13: 93 Leonis, a chromospherically-active binary. In: Monthly Notices of the Royal Astronomical Society. Bd. 350 (2), 2004, S. 685–706, bibcode:2004MNRAS.350..685G, doi:10.1111/j.1365-2966.2004.07680.x.
  144. Tadashi Nakajima et al.: Physical Properties of Gliese 229B Based on Newly Determined Carbon and Oxygen Abundances of Gliese 229A. In: The Astronomical Journal. Bd. 150 (2), 2015, Artikel-ID 53, bibcode:2015AJ....150...53N, doi:10.1088/0004-6256/150/2/53, arxiv:1506.03178 .
  145. José A. Caballero: Reaching the boundary between stellar kinematic groups and very wide binaries . II. α Librae + KU Librae: a common proper motion system in Castor separated by 1.0 pc. In: Astronomy & Astrophysics. Bd. 514, 2010, Artikel-ID A98, bibcode:2010A&A...514A..98C, doi:10.1051/0004-6361/200913986, arxiv:1001.5432.
  146. Klaus Fuhrmann et al.: On the bright A-type star Alpha Librae A. In: Monthly Notices of the Royal Astronomical Society. Bd. 437 (3), 2014, S. 2303–2306, bibcode:2014MNRAS.437.2303F, doi:10.1093/mnras/stt2046.
  147. Michael R. Line et al.: Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. I. Characterizing Benchmarks, Gl 570D and HD 3651B. In: The Astrophysical Journal. Bd. 807 (2), 2015, Artikel-ID 183, bibcode:2015ApJ...807..183L, doi:10.1088/0004-637X/807/2/183, arxiv:1504.06670.
  148. Siegfried Eggl et al.: Circumstellar habitable zones of binary-star systems in the solar neighbourhood. In: Monthly Notices of the Royal Astronomical Society. Bd. 428 (4), 2013, S. 3104–3113, bibcode:2013MNRAS.428.3104E, doi:10.1093/mnras/sts257, arxiv:1210.5411.
  149. Ming Zhao et al.: First Resolved Images of the Eclipsing and Interacting Binary β Lyrae. In: The Astrophysical Journal Letters. Bd. 684 (2), 2008, L95–L98, bibcode:2008ApJ...684L..95Z, doi:10.1086/592146, arxiv:0808.0932.
  150. Andrei A. Tokovinin: Comparative statistics and origin of triple and quadruple stars. In: Monthly Notices of the Royal Astronomical Society. Bd. 389 (2), 2008, S. 925–938, bibcode:2008MNRAS.389..925T, doi:10.1111/j.1365-2966.2008.13613.x, arxiv:0806.3263.
  151. Ricky Nilsson et al.: Project 1640 Observations of Brown Dwarf GJ 758 B: Near-infrared Spectrum and Atmospheric Modeling. In: The Astrophysical Journal. Bd. 838 (1), 2017, Artikel-ID 64, bibcode:2017ApJ...838...64N, doi:10.3847/1538-4357/aa643c, arxiv:1703.01023.
  152. Ján Budaj, Ilian Kh. Iliev: Abundance analysis of Am binaries and search for tidally driven abundance anomalies – I. HD 33254, HD 178449 and HD 198391. In: Monthly Notices of the Royal Astronomical Society. Bd. 346 (1), 2003, S. 27–36, bibcode:2003MNRAS.346...27B, doi:10.1046/j.1365-2966.2003.07071.x.
  153. Jesús Maíz Apellániz: Gaia DR2 distances to Collinder 419 and NGC 2264 and new astrometric orbits for HD 193 322 Aa,Ab and 15 Mon Aa,Ab. In: Astronomy & Astrophysics. Bd. 630, 2019, Artikel-ID A119, bibcode:2019A&A...630A.119M, doi:10.1051/0004-6361/201935885, arxiv:1908.02040.
  154. Don R. Chance, John L. Hershey: Separate Spectra of the Components of the Low-Mass Binaries Ross 614A,B and L722-22A,B. In: Publications of the Astronomical Society of the Pacific. Bd. 110 (746), 1998, S. 425–432, bibcode:1998PASP..110..425C, doi:10.1086/316146.
  155. George Gatewood et al.: An Astrometric Study of the Low-Mass Binary Star Ross 614. In: The Astronomical Journal. Bd. 125 (3), 2003, S. 1530–1536, bibcode:2003AJ....125.1530G, doi:10.1086/346143.
  156. Eric E. Mamajek et al.: The Closest Known Flyby of a Star to the Solar System. In: The Astrophysical Journal Letters. Bd. 800 (1), 2015, Artikel-ID L17, bibcode:2015ApJ...800L..17M, doi:10.1088/2041-8205/800/1/L17, arxiv:1502.04655.
  157. Trent J. Dupuy et al.: WISE J072003.20-084651.2B is a Massive T Dwarf. In: The Astronomical Journal. Bd. 158 (5), 2019, Artikel-ID 174, bibcode:2019AJ....158..174D, doi:10.3847/1538-3881/ab3cd1, arxiv:1908.06994.
  158. Yasuharu Sugawara et al.: Redshifted emission lines and radiative recombination continuum from the Wolf-Rayet binary θ Muscae: evidence for a triplet system? In: Astronomy & Astrophysics. Bd. 490 (1), 2008, S. 259–264, bibcode:2008A&A...490..259S, doi:10.1051/0004-6361:20079302, arxiv:0810.1208.
  159. A. D. Thackeray: Orbits of two double-lined spectroscopic binaries HD 147971 and 75759. In: Monthly Notices of the Royal Astronomical Society. Bd. 134, 1966, S. 97–106, bibcode:1966MNRAS.134...97T, doi:10.1093/mnras/134.1.97.
  160. Sasha Hinkley et al.: Establishing α Oph as a Prototype Rotator: Improved Astrometric Orbit. In: The Astrophysical Journal. Bd. 726 (2), 2011, Artikel-ID 104, bibcode:2011ApJ...726..104H, doi:10.1088/0004-637X/726/2/104, arxiv:1010.4028.
  161. José A. Docobo, J. F. Ling: Orbits and System Masses of 14 Visual Double Stars with Early-Type Components. In: The Astronomical Journal. Bd. 133 (4), 2007, S. 1209–1216, bibcode:2007AJ....133.1209D, doi:10.1086/511070.
  162. Alan W. Irwin et al.: 36 Ophiuchi AB: Incompatibility of the Orbit and Precise Radial Velocities. In: Publications of the Astronomical Society of the Pacific. Bd. 108, 1996, S. 580–590, bibcode:1996PASP..108..580I, doi:10.1086/133768.
  163. Xiaoli Wang et al.: The Three-dimensional Orbit and Physical Parameters of 47 Oph. In: The Astronomical Journal. Bd. 149 (3), 2015, Artikel-ID 110, bibcode:2015AJ....149..110W, doi:10.1088/0004-6256/149/3/110.
  164. Tsevi Mazeh et al.: Studies of multiple stellar systems – IV. The triple-lined spectroscopic system Gliese 644. In: Monthly Notices of the Royal Astronomical Society. Bd. 325 (1), 2001, S. 343–357, bibcode:2001MNRAS.325..343M, doi:10.1046/j.1365-8711.2001.04419.x, arxiv:astro-ph/0102451.
  165. Joanna Mikołajewska, Michael M. Shara: The Massive CO White Dwarf in the Symbiotic Recurrent Nova RS Ophiuchi. In: The Astrophysical Journal. Bd. 847 (2), 2017, Artikel-ID 99, bibcode:2017ApJ...847...99M, doi:10.3847/1538-4357/aa87b6, arxiv:1702.08732.
  166. Tomer Shenar et al.: A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. IV. A Multiwavelength, Non-LTE Spectroscopic Analysis. In: The Astrophysical Journal. Bd. 809 (2), 2015, Artikel-ID 135, bibcode:2015ApJ...809..135S, doi:10.1088/0004-637X/809/2/135, arxiv:1503.03476.
  167. Christian A. Hummel et al.: Dynamical mass of the O-type supergiant in ζ Orionis A. In: Astronomy & Astrophysics. Bd. 554, 2013, Artikel-ID A52, bibcode:2013A&A...554A..52H, doi:10.1051/0004-6361/201321434, arxiv:1306.0330.
  168. GRAVITY Collaboration (Martina Karl et al.): Multiple star systems in the Orion nebula. In: Astronomy & Astrophysics. Bd. 620, 2018, Artikel-ID A116, bibcode:2018A&A...620A.116G, doi:10.1051/0004-6361/201833575, arxiv:1809.10376.
  169. Stefan Kraus et al.: Tracing the young massive high-eccentricity binary system θ1 Orionis C through periastron passage. In: Astronomy & Astrophysics. Bd. 497 (1), 2009, S. 195–207, bibcode:2009A&A...497..195K, doi:10.1051/0004-6361/200810368, arxiv:0902.0365.
  170. Yu. Yu. Balega et al.: Young massive binary θ1 Ori C: Radial velocities of components. In: Astrophysical Bulletin. Bd. 69 (1), 2014, S. 46–57, bibcode:2014AstBu..69...46B, doi:10.1134/S1990341314010052.
  171. Herbert Pablo et al.: The most massive heartbeat: an in-depth analysis of ι Orionis. In: Monthly Notices of the Royal Astronomical Society. Bd. 467 (2), 2017, S. 2494–2503, bibcode:2017MNRAS.467.2494P, doi:10.1093/mnras/stx207, arxiv:1703.02086.
  172. Gail Schaefer et al.: Orbits, Distance, and Stellar Masses of the Massive Triple Star σ Orionis. In: The Astronomical Journal. Bd. 152 (6), 2016, Artikel-ID 213, bibcode:2016AJ....152..213S, doi:10.3847/0004-6256/152/6/213, arxiv:1610.01984.
  173. B. König et al.: Direct detection of the companion of χ1 Orionis. In: Astronomy & Astrophysics. Bd. 394, 2002, S. L43–L46, doi:10.1051/0004-6361:20021377, arxiv:astro-ph/0209404, bibcode:2002A&A...394L..43K.
  174. Jinyoung Serena Kim et al.: Proplyds Around a B1 Star: 42 Orionis in NGC 1977. In: The Astrophysical Journal Letters. Bd. 826 (1), 2016, Artikel-ID L15, bibcode:2016ApJ...826L..15K, doi:10.3847/2041-8205/826/1/L15, arxiv:1606.08271.
  175. C. D. Scarfe et al.: 64 Orionis: Three-Dimensional Orbit and Physical Parameters. In: The Astronomical Journal. Bd. 119 (5), 2000, S. 2415–2421, bibcode:2000AJ....119.2415S, doi:10.1086/301366.
  176. J . Andersen et al.: Absolute dimensions of eclipsing binaries. XVI. V1031 Orionis In: Astronomy & Astrophysics. Bd. 228, 1990, S. 365–378, bibcode:1990A&A...228..365A.
  177. Markus Kasper et al.: The very nearby M/T dwarf binary SCR 1845-6357. In: Astronomy & Astrophysics. Bd. 471 (2), 2007, S. 655–659, bibcode:2007A&A...471..655K, doi:10.1051/0004-6361:20077881, arxiv:0706.3824.
  178. Christian A. Hummel et al.: Navy Prototype Optical Interferometer Observations of the Double Stars Mizar A and Matar. In: The Astronomical Journal. Bd. 116 (5), 1998, S. 2536–2548. bibcode:1998AJ....116.2536H, doi:10.1086/300602.
  179. Matthew W. Muterspaugh et al.: PHASES Differential Astrometry and Iodine Cell Radial Velocities of the κ Pegasi Triple Star System. In: The Astrophysical Journal. Bd. 636 (2), 2006, S. 1020–1032, bibcode:2006ApJ...636.1020M, doi:10.1086/498209, arxiv:astro-ph/0509406.
  180. Andrei A. Tokovinin: Inner and Outer Orbits in 13 Resolved Hierarchical Stellar Systems. In: Astronomical Journal. Bd. 161 (3), 2021, Artikel-ID 144, bibcode:2021AJ....161..144T, doi:10.3847/1538-3881/abda42, arxiv:2101.02976.
  181. Alain Jorissen et al.: Barium and related stars, and their white-dwarf companions. I. Giant stars. In: Astronomy & Astrophysics. Bd. 626, 2019, Artikel-ID A127, bibcode:2019A&A...626A.127J, doi:10.1051/0004-6361/201834630, arxiv:1904.03975.
  182. Fabien Baron et al.: Imaging the Algol Triple System in the H Band with the CHARA Interferometer. In: The Astrophysical Journal. Bd. 752 (1), 2012, Artikel-ID 20, bibcode:2012ApJ...752...20B, doi:10.1088/0004-637X/752/1/20, arxiv:1205.0754.
  183. Jiri Libich et al.: The new orbital elements and properties of ε Persei. In: Astronomy & Astrophysics. Bd. 446 (2), 2006, S. 583–589, bibcode:2006A&A...446..583L, doi:10.1051/0004-6361:20053032.
  184. D. J. Stickland, C. Lloyd: Spectroscopic binary orbits from ultraviolet radial velocities. Paper 28: ο Persei. In: The Observatory. Bd. 118, 1998, S 138–144, bibcode:1998Obs...118..138S.
  185. L. S. Lyubimkov et al.: The binary system o Per: Orbital elements, component parameters, and helium abundance. In: Astronomy Reports. Bd. 41 (5), 1997, S. 630–638, bibcode:1997ARep...41..630L.
  186. William Foster van Altena et al.: Yale Trigonometric Parallaxes, Fourth Edition. VizieR-Datenkatalog I/238A (elektronisch veröffentlicht). 2001, bibcode:2001yCat.1238....0V.
  187. Eric E. Mamajek et al.: The Solar Neighborhood. XXX. Fomalhaut C. In: The Astronomical Journal. Bd. 146 (6), 2013, Artikel-ID 154, bibcode:2013AJ....146..154M, doi:10.1088/0004-6256/146/6/154, arxiv:1310.0764.
  188. Dimitri Pourbaix, H. M. J. Boffin: Reprocessing the Hipparcos Intermediate Astrometric Data of spectroscopic binaries. II. Systems with a giant component. In: Astronomy & Astrophysics. Bd. 398, 2003, S. 1163–1177, bibcode:2003A&A...398.1163P, doi:10.1051/0004-6361:20021736, arxiv:astro-ph/0211483.
  189. Gilles Duvert et al.: Phase closure nulling of HD 59717 with AMBER/VLTI . Detection of the close faint companion. In: Astronomy & Astrophysics. Bd. 509, 2010, Artikel-ID A66, bibcode:2010A&A...509A..66D, doi:10.1051/0004-6361/200811037, arxiv:1001.5010.
  190. L. P. R. Vaz, J. Andersen: Absolute dimensions of eclipsing binaries. IV. PV Puppis, a detached late A-type system with equal, intrinsically variable components. In: Astronomy & Astrophysics. Bd. 132, 1984, S. 219–228, bibcode:1984A&A...132..219V.
  191. Andrei Tokovinin et al.: Speckle Interferometry at SOAR in 2014. In: The Astronomical Journal. Bd. 150 (2), 2015, Artikel-ID 50, bibcode:2015AJ....150...50T, doi:10.1088/0004-6256/150/2/50, arxiv:1506.05718.
  192. Genya Takeda et al.: Stellar parameters of nearby cool stars. VizieR-Datenkatalog J/ApJS/168/297 (elektronisch veröffentlicht). 2008, bibcode:2008yCat..21680297T.
  193. Mounib F. El Eid: CNO isotopes in red giants: theory versus observations. In: Astronomy & Astrophysics. Bd. 285, 1994, S. 915–928, bibcode:1994A&A...285..915E.
  194. R. P. Kudritzki, D. Reimers: On the absolute scale of mass-loss in red giants. II. Circumstellar absorption lines in the spectrum of alpha Sco B and mass-loss of alpha Sco A. In: Astronomy & Astrophysics. Bd. 70, 1978, S. 227–239, bibcode:1978A&A....70..227K.
  195. María Eugenia Veramendi, Jorge Federico González: Spectroscopic study of early-type multiple stellar systems. I. Orbits of spectroscopic binary subsystems. In: Astronomy & Astrophysics. Bd. 563, 2014, Artikel-ID A138, bibcode:2014A&A...563A.138V, doi:10.1051/0004-6361/201322840.
  196. Gianni Catanzaro: First spectroscopic analysis of β Scorpii C and β Scorpii E. Discovery of a new HgMn star in the multiple system β Scorpii. In: Astronomy & Astrophysics. Bd. 509, 2010, Artikel-ID A21, bibcode:2010A&A...509A..21C, doi:10.1051/0004-6361/200913332.
  197. Thomas C. Van Flandern, Peter Espenschied: Lunar occultations of Beta Scorpii in 1975 and 1976. In: The Astronomical Journal. Bd. 200, 1975, S. 61–67, bibcode:1975ApJ...200...61V, doi:10.1086/153760.
  198. Anatoly Miroshnichenko et al.: The 2011 Periastron Passage of the Be Binary δ Scorpii. In: The Astrophysical Journal. Bd. 766 (2), 2013, Artikel-ID 119, bibcode:2013ApJ...766..119M, doi:10.1088/0004-637X/766/2/119, arxiv:1302.4021.
  199. William Tango et al.: Orbital elements, masses and distance of λ Scorpii A and B determined with the Sydney University Stellar Interferometer and high-resolution spectroscopy. In: Monthly Notices of the Royal Astronomical Society. Bd. 370 (2), 2006, S. 884–890, bibcode:2006MNRAS.370..884T, doi:10.1111/j.1365-2966.2006.10526.x, arxiv:astro-ph/0605311.
  200. Rebekka Grellmann et al.: New constraints on the multiplicity of massive young stars in Upper Scorpius. In: Astronomy & Astrophysics. Bd. 578, 2015, Art.-ID A84, bibcode:2015A&A...578A..84G, doi:10.1051/0004-6361/201219577.
  201. Andrei Tokovinin: Nearby Quintuple Systems κ Tucanae and ξ Scorpii. In: The Astronomical Journal. Bd. 159 (6), 2020, Artikel-ID 265, bibcode:2020AJ....159..265T, doi:10.3847/1538-3881/ab8af1, arxiv:2005.04057.
  202. Andrew Tkachenko et al.: Modelling of σ Scorpii, a high-mass binary with a β Cep variable primary component. In: Monthly Notices of the Royal Astronomical Society. Bd. 442 (1), 2014, S. 616–628, bibcode:2014MNRAS.442..616T, doi:10.1093/mnras/stu885, arxiv:1405.0924.
  203. Einzelhelligkeiten aus scheinbarer Gesamthelligkeit V = 4,22 mag (Bright Star Catalogue) und Helligkeitsdifferenz ΔmV = 3,8 (Don Hutter et al.: Surveying the Bright Stars by Optical Interferometry. I. A Search for Multiplicity among Stars of Spectral Types F-K. In: The Astrophysical Journal Supplement Series. Bd. 227 (1), 2016, Artikel-ID 4, bibcode:2016ApJS..227....4H, doi:10.3847/0067-0049/227/1/4, arxiv:1609.05254) berechnet.
  204. Sidney B. Parsons et al.: The Fine Guidance Sensor Orbit of the G4 Bright Giant HD 173764. In: The Astronomical Journal. Bd. 129 (3), 2005, S. 1700–1705, bibcode:2005AJ....129.1700P, doi:10.1086/427853.
  205. Brian D. Mason et al.: Binary Star Orbits. III. Revisiting the Remarkable Case of Tweedledum and Tweedledee. In: The Astronomical Journal. Bd. 140 (1), 2010, S. 242–252, bibcode:2010AJ....140..242M, doi:10.1088/0004-6256/140/1/242, arxiv:1006.2674.
  206. James W. Christy, R. L. Walker, Jr.: MK Classification of 142 Visual Binaries. In: Publications of the Astronomical Society of the Pacific. Bd. 81 (482), 1969, S. 643–649, bibcode:1969PASP...81..643C, doi:10.1086/128831.
  207. Nancy Remage Evans et al.: Massive Star Multiplicity: The Cepheid W Sgr. In: The Astronomical Journal. Bd. 137 (3), 2009, S. 3700–3705, bibcode:2009AJ....137.3700E, doi:10.1088/0004-6256/137/3/3700, arxiv:0902.3281.
  208. Debra J. Wallace et al.: Hubble Space Telescope Detection of Binary Companions Around Three WC9 Stars: WR 98a, WR 104, and WR 112. In: Interacting Winds from Massive Stars. ASP Conference Proceedings. Edited by Anthony F. J. Moffat and Nicole St-Louis. San Francisco: Astronomical Society of the Pacific. Bd. 260, 2002, S. 407–416, bibcode:2002ASPC..260..407W.
  209. Anthony Soulain et al.: SPHERE view of Wolf-Rayet 104. Direct detection of the Pinwheel and the link with the nearby star. In: Astronomy & Astrophysics. Bd. 618, 2018, Artikel-ID A108, bibcode:2018A&A...618A.108S, doi:10.1051/0004-6361/201832817, arxiv:1806.08525.
  210. Guillermo Torres et al.: The Hyades Binaries θ1 Tauri and θ2 Tauri: The Distance to the Cluster and the Mass-Luminosity Relation. In: The Astrophysical Journal. Bd. 485 (1), 1997, S. 167–181, bibcode:1997ApJ...485..167T, doi:10.1086/304422.
  211. K. B. V. Torres et al.: Spectra disentangling applied to the Hyades binary θ2 Tauri AB: new orbit, orbital parallax and component properties. In: Astronomy & Astrophysics. Bd. 525, 2011, Artikel-ID A50, bibcode:2011A&A...525A..50T, doi:10.1051/0004-6361/201015166, arxiv:1010.5643.
  212. J. A. Nemravová et al.: ξ Tauri: a unique laboratory to study the dynamic interaction in a compact hierarchical quadruple system. In: Astronomy & Astrophysics. Bd. 594, 2016, Artikel-ID A55, bibcode:2016A&A...594A..55N, doi:10.1051/0004-6361/201628860.
  213. Guillermo Torres: The Multiple System HD 27638. In: The Astronomical Journal. Bd. 131 (3), 2006, S. 1702–1711, bibcode:2006AJ....131.1702T, doi:10.1086/500355, arxiv:astro-ph/0512254.
  214. N. Zwahlen et al.: A purely geometric distance to the binary star Atlas, a member of the Pleiades. In: Astronomy & Astrophysics. Bd. 425, 2004, S. L45–L48, bibcode:2004A&A...425L..45Z, doi:10.1051/0004-6361:200400062, arxiv:astro-ph/0408430.
  215. Jana Alexandra Nemravová et al.: Properties and nature of Be stars. 27. Orbital and recent long-term variations of the Pleiades Be star Pleione = BU Tauri. In: Astronomy & Astrophysics. Bd. 516, 2010, Artikel-ID A80, bibcode:2010A&A...516A..80N, doi:10.1051/0004-6361/200913885, arxiv:1003.5625.
  216. Guillermo Torres et al.: The Hyades Binary Finsen 342 (70 Tauri): A Double-lined Spectroscopic Orbit, the Distance to the Cluster, and the Mass-Luminosity Relation. In: The Astrophysical Journal. Bd. 479 (1), 1997, S. 268–278, bibcode:1997ApJ...479..268T, doi:10.1086/303879.
  217. Benjamin F. Lane et al.: The Orbits of the Quadruple Star System 88 Tauri A from PHASES Differential Astrometry and Radial Velocity. In: The Astrophysical Journal. Bd. 669 (2), 2007, S. 1209–1219, bibcode:2007ApJ...669.1209L, doi:10.1086/520877, arxiv:0710.2127.
  218. Andrei A. Tokovinin, N. A. Gorynya: New spectroscopic components in multiple systems. IV. In: Astronomy & Astrophysics. Bd. 374 (1), 2001, S. 227–237, bibcode:2001A&A...374..227T, doi:10.1051/0004-6361:20010714.
  219. Marco Scardia et al.: Speckle observations with PISCO in Merate – III. Astrometric measurements of visual binaries in 2005 and scale calibration with a grating mask. In: Monthly Notices of the Royal Astronomical Society. Bd. 374 (3), 2007, S. 965–978, bibcode:2007MNRAS.374..965S, doi:10.1111/j.1365-2966.2006.11206.x.
  220. D. B. Guenther et al.: Evolutionary Model and Oscillation Frequencies for α Ursae Majoris: A Comparison with Observations. In: The Astrophysical Journal. Bd. 530 (1), 2000, S. L45–L48, bibcode:2000ApJ...530L..45G, doi:10.1086/312473.
  221. R. M. Petrie: The spectroscopic binary HD 95638. In: Publications of the Dominion Astrophysical Observatory Victoria. Bd. 11, 1960, S. 259, bibcode:1960PDAO...11..259P.
  222. Eric E. Mamajek et al.: Discovery of a Faint Companion to Alcor Using MMT/AO 5 μm Imaging. In: The Astronomical Journal. Bd. 139 (3), 2010, S. 919–925, bibcode:2010AJ....139..919M, doi:10.1088/0004-6256/139/3/919, arxiv:0911.5028.
  223. R. Ya. Zhuchkov et al.: Physical parameters and dynamical properties of the multiple system ι UMa (ADS 7114). In: Astronomy Reports. Bd. 56 (7), 2012, S. 512–523, bibcode:2012ARep...56..512Z, doi:10.1134/S1063772912070074.
  224. Byeong-Cheol Lee et al.: Long-period Variations in the Radial Velocity of Spectroscopic Binary M Giant μ Ursae Majoris. In: The Astronomical Journal. Bd. 151 (4), 2016, Artikel-ID 106, bibcode:2016AJ....151..106L, doi:10.3847/0004-6256/151/4/106, arxiv:1602.07011.
  225. Ning Liu et al.: Tomographic Separation of Composite Spectra. V. The Triple Star System 55 Ursae Majoris In: The Astrophysical Journal. Bd. 485 (1), 1997, S. 350–358, bibcode:1997ApJ...485..350L, doi:10.1086/304418.
  226. Yanning Fu, Shulin Ren: Orbit Determination of Double-lined Spectroscopic Binaries by Fitting the Revised Hipparcos Intermediate Astrometric Data. In: The Astronomical Journal. Bd. 139 (5), 2010, S. 1975–1982, bibcode:2010AJ....139.1975R, doi:10.1088/0004-6256/139/5/1975.
  227. Albert P. Linnell: A Light Synthesis Study of W Ursae Majoris. In: The Astrophysical Journal. Bd. 374, 1991, S. 307–318, bibcode:1991ApJ...374..307L, doi:10.1086/170120.
  228. Nancy Remage Evans et al.: The Orbit of the Close Companion of Polaris: Hubble Space Telescope Imaging, 2007 to 2014. In: The Astrophysical Journal. Bd. 863 (2), 2018, Artikel-ID 187, bibcode:2018ApJ...863..187E, doi:10.3847/1538-4357/aad410, arxiv:1807.06115.
  229. Julian R. North et al.: γ2 Velorum: orbital solution and fundamental parameter determination with SUSI. In: Monthly Notices of the Royal Astronomical Society. Bd. 377 (1), 2007, S. 415–424, bibcode:2007MNRAS.377..415N, doi:10.1111/j.1365-2966.2007.11608.x, arxiv:astro-ph/0702375.
  230. Antoine Mérand et al.: The nearby eclipsing stellar system δ Velorum. III. Self-consistent fundamental parameters and distance. In: Astronomy & Astrophysics. Bd. 532, 2011, Artikel-ID A50, bibcode:2011A&A...532A..50M, doi:10.1051/0004-6361/201116896, arxiv:1106.2383.
  231. David S. Evans: A rediscussion of p Velorum. In: Monthly Notices of the Royal Astronomical Society. Bd. 142, 1969, S. 523–541, bibcode:1969MNRAS.142..523E, doi:10.1093/mnras/142.4.523.
  232. E. Victor Garcia et al.: Individual, Model-independent Masses of the Closest Known Brown Dwarf Binary to the Sun. In: The Astrophysical Journal. Bd. 846 (2), 2017, Artikel-ID 97, bibcode:2017ApJ...846...97G, doi:10.3847/1538-4357/aa844f, arxiv:1708.02714.
  233. Andrew Tkachenko et al.: Stellar modelling of Spica, a high-mass spectroscopic binary with a β Cep variable primary component. In: Monthly Notices of the Royal Astronomical Society. Bd. 458 (2), 2016, S. 1964–1976, bibcode:2016MNRAS.458.1964T, doi:10.1093/mnras/stw255, arxiv:1601.08069.
  234. Marco Scardia et al.: The orbit of the visual binary ADS 8630 (γ Vir). In: Astronomische Nachrichten. Bd. 328 (2), 2007, S. 146 ff., bibcode:2007AN....328..146S, doi:10.1002/asna.200610710.
  235. Christian A. Hummel et al.: First Observations with a Co-phased Six-Station Optical Long-Baseline Array: Application to the Triple Star η Virginis. In: The Astronomical Journal. Bd. 125 (5), 2003, S. 2630–2644, bibcode:2003AJ....125.2630H, doi:10.1086/374572.
  236. Bradford B. Behr et al.: Stellar Astrophysics with a Dispersed Fourier Transform Spectrograph. II. Orbits of Double-lined Spectroscopic Binaries. In: The Astronomical Journal. Bd. 142 (1), 2011, Artikel-ID 6, bibcode:2011AJ....142....6B, doi:10.1088/0004-6256/142/1/6, arxiv:1104.1447.
  237. Guillermo Torres et al.: The Nearby Low-Mass Visual Binary Wolf 424. In: The Astronomical Journal. Bd. 117 (1), 1999, S. 562–573, bibcode:1999AJ....117..562T, doi:10.1086/300708.



Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.org внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.org - проект по пересортировке и дополнению контента Википедии